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FOREWORD

This document addresses a basic function of aircraft (and other vehicle) surveillance and navi-
gation systems analyses — guantifying the geometric relationship of two or more locations
relative to each other and to the earth. Here, geometry means distances and angles, including
their projections in a defined coordinate frame. Applications that fit well with these methods
include (a) planning a vehicle’s route; (b) determining the coverage region of a radar or radio
installation; and (c) calculating a vehicle’s latitude and longitude from measurements (e.g., of
slant- and spherical-ranges or range differences, azimuth and elevation angles, and altitudes).

The approach advocated is that the three-dimensional problems inherent in navigation/surveil-
lance analyses should, to the extent possible, be re-cast as a sequence of sub-problems:

= Vertical-Plane Formulation (two-dimensional (2D) problem illustrated in top right
panel on cover) — Considers the vertical plane containing two problem-specific
locations and the center of a spherical earth, and utilizes plane trigonometry as the
primary analysis method. This formulation provides closed-form solutions.

= Spherical-Surface Formulation (2D problem illustrated in bottom left panel on
cover) — Considers two or three problem-specific locations on the surface of a
spherical earth; utilizes spherical trigonometry as the primary analysis method. This
formulation provides closed-form solutions.

= Three-Dimensional Vector Formulation — Utilizes 3D Cartesian vector frame-
work; best-suited to situations involving four or more problem-specific points and
slant-range or slant-range difference measurements; provides closed-form solutions.

= Non-Linear Least-Squares (NLLS) Formulation — Employed for the most
complex situations, and does not require many of the idealizations necessary for
simpler approaches. Provides estimates of the accuracy of its solutions. Drawback is
that it requires numerical methods, consequently solution properties are not evident.

These techniques are applied, in the context of a spherical earth, to a series of increasing
complex situations, starting with two problem-specific points (e.g., a route’s origin and
destination) and extending to three or more points (e.g., an aircraft and multiple surveil-
lance/navigation stations). Closed-form solutions are presented for measurements involving
virtually every combination of ranges, pseudo ranges, azimuth/elevation angles and altitude.

The Gauss-Newton NLLS methodology is employed to address the most complex situations.
These include circumstances where there are more measurements than unknowns and/or the
measurement ‘equations’ cannot be inverted analytically” (including those for an ellipsoidal-
shaped earth) and/or are not analytic expressions (e.g., involve empirical data).

* The term ‘analytic’ is used for expressions that are described by mathematical symbols, typically from algebra,
trigonometry and calculus. ‘Inverting’ refers to solving such expressions for a set of desired unknown variables.
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1. INTRODUCTION

1.1 Overview of Analysis Methodologies and Their Applications

This document addresses a fundamental function in surveillance and navigation analysis —
quantifying the geometry of two or more locations relative to each other and to the earth. Here,
‘geometry’ refers to: (a) points (idealized locations); (b) paths between points; and (c) distances
and angles involving paths. Points represent locations of either vehicles, route origins/destin-
ations/waypoints and navigation/surveillance sensors. Paths are trajectories followed by vehicles
or sensor signals. Distances are the lengths of paths that are either straight lines or follow the
earth’s surface. Angles between paths may be measured in horizontal or vertical planes.

1.1.1 Trigonometric and Vector Analysis Methodologies (Chapters 3 — 5)

The approach that may first come to mind when addressing an analysis situation is to treat it as a
three-dimensional problem, and to employ vector analysis. Vector analysis a modern technique
(it was not well formulated until approximately 1900) and is often useful. However, a classical
approach (with roots dating to approximately 500 AD) is recommended as the first option. Thus,
to the extent possible, three-dimensional problems should be re-cast as two separate two-
dimensional problems, each of which can be addressed by a branch of trigonometry:

= Vertical Plane Formulation (Chapter 3)" — This formulation considers the vertical
plane containing two problem-specific locations and the center of the earth. Problem-
specific locations are unconstrained vertically, except that at least one altitude must
be known. Plane trigonometry is the natural analysis tool when altitudes, elevation
angles and slant-ranges are involved. Conversely, latitude and longitude coordinates
are not utilized.

= Spherical Surface Formulation (Chapter 4) — This formulation —sometimes called
great-circle navigation — considers two or more problem-specific locations on the
surface of a spherical earth. Spherical trigonometry is the natural analysis tool when
the earth’s curvature must be considered explicitly. Latitudes and longitudes, as well
as spherical-ranges (distances along the earth’s surface) and azimuth angles with
respect to north or between two paths, are inherent to this formulation. A limitation is
that altitudes cannot be accounted for.

These two-dimensional analyses can generally be performed in the above sequence, with the
result that most limitations of each analysis method are overcome. Section 1.2 provides an
overview of this process. (For historical and practical reasons, in this document when there are

* Organizational terminology: X designates a Chapter; X.Y designates a Section (of a Chapter); X.Y.Z designates a
Subsection (of a Section).
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two problem-specific locations, they are often labeled U [user]) and S [satellite] *. These are only
labels, and do not restrict application of the analysis.)

Some problems/situations are better suited to vector analysis than to trigonometric analysis, and
important methodologies are based on vector analysis. Thus, it is addressed as well:

= Vector Analysis Formulation (Chapter 5) — The 3D-vector approach is preferable
in situations that involve: (1) three or more problem-specific points that must be
considered simultaneously (rather than sequentially, which allows one vertical plane
to be considered at one time); and/or (2) only slant-range-type measurements (true
slant-ranges, slant-range differences and/or altitude).

Limitations of the vector formulation are that (1) the earth’s curvature is not handled well, and
(2) insight into a problem can be hindered by the vector notation. Ultimately, the two metho-
dologies are complementary: some situations can be addressed by both; some only by the
combined trigonometric formulations; and some only by the vector formulation.

1.1.2 Applications of Trigonometric and Vector Methods (Chapters 6 — 7)

Chapters 6 and 7 apply the analysis methodologies described in Chapter 3-5 to situations invol-
ving three or more problem-specific points (e.g., an aircraft and two, three or four sensors). The
following two significant restrictions are imposed:

(1) the number of measurements and unknown quantities are equal

(2) the earth is modeled as a sphere.

These restrictions enable closed-form solutions to be found. The primary value of a closed-form
solution is that its properties — such as existence (e.g., What ranges of measured quantities do /
do not result in a solution?) and uniqueness (e.g., Are there multiple solutions? Can the correct
solution be determined?) — can be examined. It is also beneficial to have a comprehensible set
of expressions for a solution.

Chapter 6 addresses scenarios involving sensors that measure slant- or spherical-range and
azimuth angles (with aircraft altitude always known).

Chapter 7 addresses systems that measure slant- or spherical-range differences (a capability
enabled by 20™ century technologies). Often, these problems require consideration of all
measurements simultaneously, and the vector methodology plays a more prominent role than the
trigonometry-based methodology; however, both are used.

* Historical: these notes were begun for a project involving satellites. Practical: the Microsoft Word Equation Editor
v3.1 does not have a global change capability.

1-2



DOT Volpe Center

1.1.3 Gauss-Newton NLLS Methodology and Applications (Chapter 8)

Chapter 8 eliminates restrictions (1) and (2) in the previous subsection. It first describes the
Gauss-Newton Non-Linear Least-Squares (NLLS) method, which addresses situations that:

(a) may involve more measurements than unknown variables, and (b) do not necessarily have
invertible (or even analytic) measurement equations. This generality enables the calculation of
numerical solutions for situations involving non-ideal sensors, an ellipsoidal earth, and/or other
analytically intractable aspects. However, a drawback of the NLLS technique is that its solution
properties cannot be readily characterized. The NLLS methodology is applied to a series of
problems that, for various reasons, cannot be addressed by the trigonometric or vector methods.

1.2 Summary of Trigonometric Methodology

1.2.1 Vertical Plane Formulation

Figure 1 depicts a vertical-plane involving: an earth-based

user U; a satellite S above a spherical earth; the satellite
nadir (or sub-point) N; and the center of the earth O. Points
U and S (or N) are problem-specific; O is not. All four
locations are in the plane of the paper. Points O, Nand S
form a straight line. These points have no special relatio-
nship with the earth's spin axis. Since a ‘snapshot’ analysis
is involved, no assumptions are made regarding the satel-
lite’s trajectory.

In Figure 1, three linear distances are of interest:
= R, Earthradius (length of OU and ON)
= h Satellite altitude above the earth (length of NS)
= d User-satellite slant-range (length of US).

And two angles are of interest:

= a Satellite elevation angle relative to the user's
horizon (may be positive or negative)

Figure 1 Vertical Plane
Bisecting a Spherical Earth and
Containing Points U, O, Nand S

= 6 Geocentric angle between the user and satellite
nadir (is always positive).

The earth radius R, is always assumed to be known.
There are four variables associated with this formulation: h, d, « and 8. If any two are known,
the remaining two can be found. Thus, there are six possible groupings. Subsection 3.2.2 shows

how to relax the restriction of U being on the earth’s surface, to its having a known altitude.
Chapter 3 details the full set of 12 possible equations for this formulation.
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Of these four variables, the geocentric angle 8 (which is equivalent to distance along the earth’s
surface, or spherical-range) is also a variable in the spherical surface formulation. It serves as the
link for relating the two formulations — i.e., for transferring a solution to the vertical plane
formulation into the spherical surface formulation (Subsection 4.1.3 elaborates on this topic).
The other three variables (h, d and «) are related to the altitude of S above the earth’s surface
and have no role in the spherical surface formulation.

1.2.2 Spherical Surface Formulation

The spherical surface formulation is an application of spherical trigonometry. This formulation is
almost perfectly matched to marine surface navigation, and was developed by the ancients partly
for that purpose. It can be used for many aviation navigation and surveillance situations by
combining it with the vertical plane formulation.

The left-hand side of Figure 2 depicts the earth’s familiar latitude/longitude grid. The right-hand
side shows two problem-specific points U and S on the surface and the seven variables involved
in a two-location problem on a sphere:

= the latitude/longitude, respectively, of U (Ly, Ay) and of S (Lg, As)

= the geocentric angle 8 between U and S, and

= the azimuth angles vy, and ¥, /s of the great circle” arc connecting U and S.

e North North

Vs Wys (negative

as shown)

U (Ltfai[‘) é

I i__d-_-_-'.: £ S (Lg, 4g)

Figure 2 Spherical Surface Containing Points U and S

Generally, four of these variables must be known; from those, the other three can be computed.
Even this simple problem involves 35 possible groupings of known / unknown variables. By
taking advantage of symmetries, the situation can be described by 16 unique problems (Sub-
section 4.1.8) —still a significant number. Thus, in contrast with the exhaustive approach taken
for the vertical plane formulation, a more selective approach is adopted for the spherical-earth

* A great circle results when a sphere is sliced exactly in half. An arc from great circle (also called an orthodrome) is
the path having the shortest length between two points along the surface of a sphere.
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formulation: equations are presented only for the variable groupings of highest interest.

“Geodesy is the science concerned with the exact positioning of points on the surface of the
Earth” (Ref. 1). In geodesy, analyses involving two groupings of known/unknown variables

occur so frequently that they have been named:
= Direct (or first) problem” of geodesy: (a) Given the coordinates (L, A,) of U, the
geocentric angle 6 between U and S, and azimuth angle v, of a great circle path

starting at U and ending at S; (b) Find the coordinates (Lg, As) of the end point S and the
path azimuth angle at the end point ¥ s.

= Indirect (or second, or inverse) problem of geodesy: (a) Given the coordinates (Ly, Ay)
and (Lg, As) of points U and S, respectively; (b) Find the geocentric angle 6 connecting
Uand S, and the azimuth angles (from north), 5, and ¥y, s, of the path at each end.

In both Chapter 4 (spherical surface formulation) and Chapter 5 (vector formulation), solution
equations are provided for the Direct and Indirect problems of geodesy, and variations thereon
that have relevant applications. Many of the problems addressed in Chapter 6 use the Direct or
Indirect problem as a step in the solution algorithm.

1.3 Applicability and Limitations of Methodologies

With a few exceptions, the methodologies presented herein generally reflects conditions and

assumptions appropriate to aircraft navigation and surveillance, including:

= Earth Curvature Considered — With the exception of aircraft on the surface of an
airport, the curvature of the earth is a fundamental aspect of aircraft navigation and
surveillance analysis and cannot be neglected.

= Three-Dimensions Frequently Must Be Considered — Some essential operations,
such as aircraft approach, require that lateral/longitudinal position and altitude all be
considered, necessitating a three-dimensional analysis methodology.

= Horizontal Position and Altitude Are Decoupled at Long Ranges — Generally,
scenarios requiring simultaneous consideration of three dimensions involve aircraft-
sensor ranges of less than 250 miles, the maximum visible distance of aircraft at
40,000 feet of altitude.

= Altitude Measurement Are Always Available — Virtually all aircraft provide baro-
metric altitude information that can be adjusted to the elevation above sea level.

The analysis also embodies the following assumptions/limitations:

= Static Scenarios — Scenarios analyzed are ‘snapshots’ — i.e., motion of an aircraft
is not explicitly involved. Sequence of locations are considered, but the notions of
velocity or time as mechanisms for relating those locations are not utilized.

= Straight-Line / Great-Circle Vehicle Paths — When a spherical-earth model is

* Note the academic/mathematical use of the word “problem” in the narrow sense of specific groupings of known
and unknown variables. This document also uses “problem” in the broader sense of a situation to be analyzed.
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used, vehicle ‘horizontal’ (latitude/longitude) trajectories are always great circles.
That is, they lie in a vertical plane that contains the center of a spherical earth.
Vertical trajectories may be constant altitude or a geometric straight line.

= Geometrically Simple Radio Wave Propagation Paths— Radio waves follow
paths that result in the shortest transmission time between a transmitter and receiver.
When the intervening media can be treated as free space, a geometric straight-line
path model is used. When the density of the atmosphere must be considered, a 4/3'%
earth path model is used. When the conductivity of the earth must be considered,
great circle paths are assumed.

= Terrain/Obstacles Ignored — Except for the earth itself, obstacles such as hills/
mountains or man-made structures that could block the signal path between two
locations (e.g., a sensor and a vehicle) are not addressed.

One might ask: Why emphasize a spherical earth model, when an ellipsoidal model is more
accurate? The rationale is:

= Insight/Confidence — When the number of measurements is equal to the number of
unknown quantities, a spherical earth-model often has a closed-form solution that is
understandable. Conversely, an ellipsoidal model never has a closed form solution;
the analyst must initialize, utilize and trust a numerical solution. In such a situation, a
method for checking the numerical solution is necessary.

= Ellipticity Error Often Acceptable — While an ellipsoidal model more accurately
describes the earth’s shape, the earth is *99.7% round’ (the ratio of the polar to
equatorial radii). The ellipticity error resulting from employing the spherical-
approximation is acceptably small for some applications.

= [Initialize Iterative Solution Process, When Needed — The spherical-earth
approximation provides excellent initial values for iterative solution processes that are
required to eliminate the above assumptions/limitations.

Engineering analyses methods have been characterized thusly: “There are exact solutions to
approximate problems, and approximate solutions to exact problems. But there are no exact
solutions to exact problems”.” The techniques described in Chapters 3—7, based on the spherical
earth approximation, are exact solutions to approximate problems. The spherical-earth approxi-
mation is often made in authoritative documents that address similar applications (e.g., Refs. 1, 2
and 3). When an ellipsoidal-earth model is required and iterative numerical technique must be
employed (Chapter 8), the spherical-earth approximation provides excellent initial values for the

iteration process.

1.4 Document Outline

Chapter 1 (this one) describes the basic problems to be addressed, and outlines the recommended
methodology for their solution. Chapter 2 is mathematical in nature, and is included to make this

* Conveyed by Prof. Donald Catlin (Univ. of Mass. Amherst, Mathematics Dept.), who attributed it to Prof. Lotfi
Zadeh (Univ. of Calif. Berkley, Electrical Engineering Dept.).
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document more self-contained.

Chapters 3 through 8 address mathematical solution techniques that are matched to the nature of
the problem at hand — e.g., geometry and number and types of measurements. These are
synopsized in Section 1.1. Table 1 is a high-level roadmap of location of the topics addressed.

Table 1 Topic Locations by Geometric Factors

gsion Two Dimensions Three Dimensions
Shape
= Plane Trigonometry (problem limited to a | = Vector Analysis — Chapter 5
Spherical | VeTical plane) - Chapter 3 * Plane & Spherical Trigonometry
Earth = Spherical Trigonometry (problem limited combined — Chapter 6
to the Surface Of a Sphere) - Chapter 4 (2 M Non_Linear Least Squares — Chapter 8
points) and Chapter 6 (3 points)
= Vincenty's Algorithm (2 points on an = Vector Analysis — Section 9.3
Ellipsoidal | ellipsoid) — Subsection 2.2.3 = ‘Bancroft’ sections in Chapter 7
220 * Non-Linear Least Squares (>2 points on |« Non-Linear Least Squares — Chapter 8
an ellipsoid) — Chapter 8

To illustrate application of the analysis techniques described herein, example applications are
presented at the ends of several chapters that address:

= Air Traffic Control (ATC) radar coverage (Example 1)

= Precision approach procedure design (Example 2)

= Satellite visibility of/from the Earth (Example 3)

= Great-circle flight path between Boston and Tokyo (Example 4)

= ATC radar display coordinate transformations (Example 5)

= Single VOR/DME station RNAYV fix (Example 6)

= Ground path length ellipticity error for selected airport pairs (Example 7)

= Simplified navigation system that measures slant-ranges in two dimensions
(Examples 8)

= Simplified navigation system that measure slant-range difference in two dimensions
(Examples 9)

= Aircraft latitude/longitude determination from measurements of the pseudo spherical-
ranges to three stations in a single Loran chain (Example 10);

= Aircraft latitude/longitude determination from measurements of the pseudo spherical-
ranges involving four stations from two Loran chains (Example 11)

= A Wide Area Multilateration (WAM) surveillance system using measurements of
slant-range differences and altitude for an aircraft (Example 12)

= Aircraft latitude/longitude determination from measurements of the pseudo spherical-
range to five stations (Example 13)

= Aircraft latitude/longitude determination from measurements of the azimuth angles to
two ground-based transmitters (Example 14).

Relevant specialized topics are presented in an Appendix (Chapter 9).
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2. MATHEMATICS AND PHYSICS BASICS

2.1 Exact and Approximate Solutions to Common Equations

2.1.1 Law of Sines for Plane Triangles

For future reference, the law of sines applied to the plane triangle UOS in Figure 1 yields

sin(f) _ sinGzr +a) sin(Gw—a —6)

= Eql
d R, +h R,
Using the properties of trigonometric functions, Eq 1 reduces to
in(@ +6
sin(6) cos(a) _ cos(a + 6) Eq 2

d R.,+h R,
In Eq 2, the left-center equality,
(R, + h) sin(0) = d cos(a) Eq3

relates all five quantities of interest in a simple way.

The left-right equality in Eq 2 is equivalent to

R, sin(0) = d cos(a + 0) Eq4

This expression relates one side variable, d, and the two angle variables, a and 6.

Similarly, the center-right equality in Eq 1 is equivalent to

R, cos(a) = (R, + h) cos(a + 0) Eg5

This expression relates one side variable, h, and the two angle variables, a and 6.

2.1.2 Law of Cosines for Plane Triangles

For future reference, the law of cosines is applied to the plane triangle UOS in Figure 1. When
the angle at O is used as the angle of interest, the result is

d?> =R?+ (R, + h)?> — 2R, (R, + h)cos(8) Eq6

When the law of cosines is applied using the angle at U, the result is

(Re + h)? = RZ + d? — 2R, dcos(;m + a) Eq7

Each of these equations relates variables for two sides, d and h, and one angle — 6 in Eq 6, and
ainEq7.
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2.1.3 Law of Tangents for Plane Triangles

The law of tangents for a plane triangle having sides a and b (respectively) with opposite angles
Aand B is
a—b tan(3(4A—B))
a+b  tanGG(4 + B))

Eq 8

The law of tangents can be used to find angles A and B simultaneously from their opposite sides,
a and b, and the angle, C, enclosed by a and b. Thus

a
A — B = 2 arctan [a tan(%(n - C))]

+b Eq9
A+B=n—-C
It follows that
1 a— 1
A= E(7T — C) + arctan [a "y cot(EC)]
a— ) Eq 10
— 1 — —
B = E(7T C) — arctan [a > cot(EC)]

The law of tangents (like the law of sines) can be used to find one side of a triangle from a linear
equation, given another side and both opposite angles. Both denominators in Eq 8 must be posi-
tive. Thus A > B if and only if a > b. So, if the sides of a plane triangle are ordered based on
length, their opposite angles must have the same order based on magnitude, and vice versa.

2.1.4 Quadratic Algebraic Equation

In some instances, a quadratic equation similar to the following must be solved

Ax*+Bx+C=0 Eq 11
The algebraic solution is
— 2 _
- B +VB?% — 4AC Eq 12
2A

Generally, we cannot have imaginary roots, so B > 4AC when A and C have the same sign. In
many instances, the positive root is sought. In these situations:

-B++VB2—4AC B 4AC
= =>7(-1+v1-D) , D=

ID| <1

2A B?
B /1 1 1 5 7 21 33
N _Dn24__p3 4 5 6 L _"" n7 ... Eq 13
x 2A<2D+8D +16D +128D +256D +1024D +2048D * )
BD C D50
- - = —— -
*TTwma T ™
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2.1.5 Computational Precision

To retain measurement precision, geodetic navigation and surveillance calculations typically
require a minimum of ten decimal places (although they may not be needed in all applications).
The reasons are that: (1) the earth radius and related quantities are known to an accuracy of one
foot, or eight decimal places (Section 2.2); and (2) locations of interest on the earth’s surface are
often stated to hundredths of a foot, or ten decimal places (typical FAA and Coast Guard data).

If the analyst determines that calculations should be capable of replicating specified locations in
the presence of computational effects (typically when using automation equipment), floating-
point double-precision arithmetic is a minimum requirement. The IEEE 64-bit float pointing
format “gives 15-17 significant decimal digits precision” (Ref. 4). Moreover, awareness of
potential precision issues remains the analyst’s responsibility.

2.1.6 Inverse Trigonometric Functions

Intrinsic to navigation analysis is the calculation of angles using inverse trigonometric functions.
In performing such calculations, two concerns must be borne in mind: (1) numerical ill-con-
ditioning and (2) ambiguous/extraneous solutions. Numerical ill-conditioning typically occurs
when sine or cosine function values are close to +1. Ambiguous/extraneous solutions occur when
multiple angles satisfy a mathematical equation, and are a concern when the approximate value
of the correct angle is not known. The equations in the following chapters attempt to address
these concerns, but every situation cannot be anticipated.

Numerical 1lI-Conditioning — Both the sine and cosine functions have angular arguments for
which, simultaneously, the function’s (a) value is =1, and (b) derivative is zero. In such
situations, relatively large changes in the angular argument can result in small changes in the
function value, which may be subject to truncation or round off. Thus, computing an angle using
the inverse of a trigonometric function often requires care and/or increased precision.

Table 2 illustrates numerical ill-conditioning for geocentric angle 8 computed from the arc
cosine function. For illustrative purposes, five decimal digits are used for angles in radians and
their trigonometric function values (linear distances are regarded as comments). Here the
minimum detectable cosine function change corresponds a linear distance greater than 10.3 NM.
For most applications, use of double precision will alleviate problems of this nature, but use of
single precision (which typically is accurate to seven decimal places) typically will not.
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Table 2 Behavior of Trigonometric Functions for Small Geocentric Angles 6

0 (rad) (m’) (feee‘f) cos(8) | 1-cos(8) | sin(e) f'cncfgzé)
0.00000 0.000 0 1.00000 0.00000 0.00000 —
0.00001 0.034 209 1.00000 0.00000 0.00001| 2.00 E+05
0.00003 0.103 627 1.00000 0.00000 0.00003| 6.67 E+04
0.00010 0.344 2,090 1.00000 0.00000 0.00010| 2.00 E+04
0.00030 1.031 6,270 1.00000 0.00000 0.00030| 6.67 E+03
0.00100 3.438 20,900 1.00000 0.00000 0.00100| 2.00 E+03
0.00300 10.313 62,700 1.00000 0.00000 0.00300| 6.67 E+02
0.01000 34.378 209,000 0.99995 0.00005 0.01000| 2.00 E+02
0.03000| 103.134 627,000 0.99955 0.00045 0.03000| 6.67 E+01
0.10000| 343.780 2,090,000 0.99500 0.00500 0.09983| 2.00E+01

When hand calculations were the norm, a remedy to such situations was to employ the sine or
tangent function, rather than the cosine function, when small angles are to be found. Unlike the
cosine function, the sine and tangent functions increase monotonically from a zero value for a
zero angle. In Table 2, the last column (calculated using double precision) indicates that for an
angle of 0.000,01 rad, the sine function has a five decimal place precision advantage over the
cosine function.

A method for recasting an ill-conditioned expression for cos(8), which dates to the middle of the
first millennium, is illustrated in Eq 14.

Given cos(@) = f(other variables) =1- g(other variables)

Invoke cos(@)=1- Zsinz(gj
(o) 1 %

Thus sinl Zl=—.1-f = /%
(Zj 2 \/;

So 0=2 arcsin(\/gJ

An example application of Eq 14 is finding the shortest side 8, of a right spherical triangle,
given the hypotenuse 8, and the other side 85 which have similar magnitudes. Spherical
trigonometry, addressed in Section 4.1, provides the spherical equivalent of Pythagoras' theorem,
cos(0y) = cos(8,) cos(0g). Using cos(fg) — cos(.) =2 sin[%(@c + 6p)] sin[%(ec — 05)].

an identity from plane trigonometry, it follows that

cos(GH)) Y ares sin[2(6y + 65)] sin[2(6y — 65)]
cos(0g)) aresin cos(6g)

Eq 14

0, = arccos( Eq 15
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\/sin[%(GH + 6p)] \/Sin[%(gﬂ - 93)]\

= 2 arcsin

\Jcos(0p)

Ambiguous/Extraneous Solutions — Trigonometric functions
are periodic. Consequently, inverse trigonometric functions can
result in multiple angles. (Figure 3 illustrates the principal values
for the arccos and arcsin.) Herein, the term ‘ambiguous’ refers to
situations where more than one solution to a mathematical
equation satisfies the physical problem posed, whereas “‘extran-
eous’ solutions satisfy the mathematical equation but not the
physical problem. To limit the frequency of such situations, when
selecting an equation, the analyst should consider the expected
range of values for the angle involved — e.g.,

= Elevation Angles — Elevation angles a vary
between -n/2 and w/2, so the arc sine and arc tangent
functions, which result in unique angles in [-n/2, /2] are
preferred.

/

arccos(r)

arcsin(z)

= Geocentric Angles — Geocentric angles 6 vary between 0 Figure 3 Principal Values of

and =, so the arc cosine or half-angle arc sine formulas are
preferred, since both yield unique angles in [0,x]

arcsin and arccos Functions

= Azimuth Angles — Azimuth angles i vary between — and =, so the four-quadrant (two

argument) arc tangent function is preferred.

Unfortunately, some physical situations are inherently ambiguous. When such a situation occurs
and the correct solution cannot be determined by inspection, the approach taken herein is make
the ambiguity explicit by using the principal value of the arc function involved and introducing
additional notation such as “+’. When the principal value is to be used, the ‘a’ in arc is
capitalized. Such situations occur, e.g., in Subsections 3.3.1 and 3.4.4. In the former, the quantity
‘arccos[u cos(a)]’ is to be found, where u > 0. Since the correct resulting angle may be posi-
tive or negative when a > 0, for clarity, the quantity is written as ‘+Arccos[u cos(a)]’.

2.1.7 Power Series Expansions for arcsin, arccos and arctan

In the analysis that follows, a common situation is the need to compute the inverse of a trigo-
nometric function for an argument such that the resulting angle will be closeto 0 —e.g., 6 =

arcsin(x), 8 = arccos(1 — x) or 8 = arctan(x), where x is close to 0.

First, it is known that (Ref. 5)
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in(x) = J1s,3 5,5 , 35 , 63
ATCIMX) =X T X T20* T112° T1152% " 2816”

1y Eq 16

A Taylor series expansion of arccos(1 — x) is not available, due to its lacking a derivative at
x = 0. However, a more general power series (often called a Frobenius expansion) is available;

thus, utilizing Eq 14 and Eq 16:

arccos(1 — x) = 2 arcsin (\/;)

Eq17
—2(1+1 b i ey O3 sy )
—Vex 1277 160" "896" T18432" To9o112”
Lastly, from Ref. 5:
1 1 1 1
arctan(x) = x —=x3 +=x° —=x7 + =x% — —x1 £+ ... Eq 18

3 5 7 9 11

2.1.8 Single-Variable Numerical Root Finding Methods

Introduction — When it’s necessary to find an unknown scalar quantity, the preferred situation
is to have (or develop) an equation whereby all known quantities are on one side and the
unknown quantity is isolated on the opposite side (sometimes call ‘inverting’ the original
equation). However, situations inevitably arise whereby the available expressions cannot be
manipulated to isolate the unknown quantity (sometimes called ‘intractable’). This is particularly
true when three-dimensions are involved and/or an ellipsoidal model of the earth is employed. In
such situations, recourse is often made to numerical root finding techniques.

The most widely-known scalar root-finding technique is “Newton’s” or the “Newton-Raphson”
method (Ref. 6). Newton’s method performs well for most functions, but has the disadvantage
that it requires the derivative of the expression with respect to the variable whose value is sought.
Often the derivative is difficult or impossible to find analytically. Thus, in applied work, interest
is frequently focused on derivative-free root-finding techniques. Such techniques were first
investigated by the ancients, including the Babylonians and Egyptians.

Secant Method — The secant method is among the simplest and oldest root-finding algorithms.
Assume that we seek a value of x that satisfies f(x) = 0 and that two initial or previous
estimates for x are available, x,,_; and x,,. The expression for the next estimate, x,, .4, then is

Xp — Xp-1

Xn+1 = Xn — f(xn)

_ xn—lf(xn) - xnf(xn—l)

fO) = fn1) — fO) = fltns)

Eq 19
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The secant method is a finite difference version of Newton’s method; in effect, it uses the

previous two points to estimate the function’s derivative. The points x,,_; and x,, that are used to

generate x,,,.; maybe, but are not required to be, on opposite sides of the root sought.

Example of Secant Method — An example of the secant method is determining the square root

of 2—i.e., finding the root of f(x) = x2- 2. Table 3 shows the results of applying Newton’s
method and the secant method, beginning from similar points.

Table 3 Comparison of Newton’s and Secant Methods for Finding the Square Root of 2

lteration. n _ Newton’s Methoq _ Secant Method'
’ Variable, Xn Function, f(x) Variable, Xn Function, f(x)
1 1.0000000000 -1.0000000000 1.0000000000 -1.0000000000
2 1.5000000000 0.2500000000 1.5000000000 0.2500000000
3 1.4166666667 0.0069444444 1.4000000000 -0.0400000000
4 1.4142156863 0.0000060073 1.4137931034 -0.0011890606
5 1.4142135624 0.0000000000 1.4142156863 0.0000060073
6 — — 1.4142135621 -0.0000000009
7 — — 1.4142135624 0.0000000000

Discussion — After initialization, both Newton’s and the secant method converge in one step if
the function f is linear over the interval between the initial value(s) and the root. Generally, con-
vergence is governed by the first and second derivatives of f. Functions that have a constant or
continuously increasing (or decreasing) derivative are most amenable to a numerical root finder.
For such functions, Newton’s method convergence is order 2 (i.e., the error for iteration n is
proportional to the square of the error for iteration n-1); the secant method convergence is order
1.6 (termed ‘superlinear’). If one weights function and derivative evaluations equally, the secant
method can be faster than Newton’s method.

Guaranteed Convergence Methods — While effective for favorable initial conditions, conver-
gence is not guaranteed for either Newton’s or the secant method. If not chosen close enough to
the root sought, the initial point(s) can result in a derivative (or numerical approximation thereof)
which is much smaller in absolute value and/or of opposite sign than the derivative at the solu-
tion. That, in turn, can cause the next estimate, xn+1, to be far from the root sought (divergence).

The two methods described immediately below guarantee convergence, provided that the initial
estimates x; and x, are on opposite sides of the root sought and that there is only one root
between x; and x,. These conditions are often satisfied in navigation problems. The cost of this
robustness generally is speed of convergence. Neither method converges as rapidly as Newton’s
or the secant method for well-chosen initial point(s). Two examples are provided below.

False Position (Regula Falsi) — The method of false position uses almost the same expression as
the secant method to find the next estimate, x,,, 1, for the root sought. The difference is that the
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initial two estimates, now labeled x; and x;, are required to be on opposite sides of the root
sought. Moreover, at each subsequent iteration, the two points used to compute x,,,, (i.e., x, and
x;, In Eq 20) are required to be on opposite sides of the root. The weakness of the false position
method is that convergence can be very slow when f is highly nonlinear, because the actual
function and assumed linear function behaviors are widely different.

L _mflw) —xfGw)
T T o)

= x, orx, suchthat f(x,,1)f(x,.1) <0 Eq20

Interval Bisection — Interval bisection is among the oldest root finding techniques. Like the

method of false position, the initial two estimates, x; and x;, are required to be on opposite sides
of the root sought. Then, at each iteration, x,,,; is set to the mean of x,, and x,, (Eq 21). As for
the method of false position, x;,,.  is set to either x,, or x,,, whichever is on the side opposite
Xn+1 Of the root. Except for its sign, the interval bisection method does not take account of the
value of the function f. This is a drawback when f is almost linear. However, it is an advantage
when f is highly nonlinear, since it is better to assume nothing about a function’s behavior than to
make an incorrect assumption.

Xns1 = 050, +x5) , X544 = xporx, suchthat f(x,.1)f(xneq) <O Eq 21

These two methods can be used separately or in combination, either as the first root finding
technique employed or as an alternative when the secant method fails.

Example of Guaranteed Convergence Methods (Poor Initial Values) — The function

selected is specified in Eq 22 and illustrated in Figure 4. It is representative of functions often

encountered in navigation analysis. Although highly nonlinear, it is ordinary in many aspects.

It’s monotonically increasing, as is its derivative. The initial two points are on opposite sides of

the root sought (at /4 = 0.785398...), but are intentionally selected not to be close to the root.
1

—_— =0 1 =15 Eq 22
cos?(x) 1 *1 q

f(x) =

Three guaranteed-convergence root finding algorithms are employed for Eq 22: interval
bisection, false position, and alternating between the two. The stopping criterion is | f (x;,)| <
10719, The iteration numbers n that satisfy the stopping criterion are (and an opinion): interval
bisection, n = 37 (acceptable); false position, n = 1,696 (not acceptable); and alternating, n = 20
(preferred).

The excessive number of iterations required by the false position method is due to its primary
limitation: one of the two points used to compute x,,,; (Eq 20) may remain fixed (‘pinned’) at
one of the initial values. In this case, x;, = x; = 1.5 for n = 2,3,4, ... while x,, increases
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gradually from slightly greater than zero to the root sought.
200

150

—_

o

o
T

Ordinate, f(x)
S

0.5 1 1.5
Abscissa, x

Figure 4 Example Function for Numerical Root Finding Techniques

The secant method diverges for this example. The values computed for x5 and x, are the same as
x, and x5 for the false position method. However, for the secant method, the computed value for
Xs IS 44.26..., which is well outside the initial interval. One might posit that the very slow
convergence of the false position method for this example is the “cost’ of using a linear method
that guarantees convergence in a situation where the secant method diverges.

Role of Initial VValues — The initial values are an integral part of a root-finding problem.
‘Good’ initial values result in a situation whereby the function is almost linear for the interval
containing the root sought and the initial values. Then the secant method can be used and
convergence is rapid. Conversely, for ‘poor’ initial values, the function is highly nonlinear over
that interval. Then a guaranteed-convergence algorithm is needed and convergence is slower.
Conceptually, one may regard alternating between the interval bisection and false position
methods as using the interval bisection method to improve the initial estimates for the false
position method.

Example of Guaranteed Convergence Methods (Good Initial Values) — If the example of Eq
22 is modified by choosing x; = 1 rather than 1.5 (without changing anything else), then the
problem is transformed from one that is highly nonlinear to one that is almost linear. The
iteration numbers n that satisfy the stopping criterion are: interval bisection, n = 37; false
position, n = 29; and alternating between the two, n = 16. For this modified example, the secant
method converges and satisfies the stopping criterion when n = 11.
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Summary: Guaranteed Convergence Methods — Convergence of the false position method is
highly sensitive to the initial values used, while convergence of the interval bisection method is
completely insensitive to the initial values. Alternating between the two methods is often more
efficient than using either exclusively, for both ‘good’ and ‘poor’ initial conditions. Other
techniques for combining the interval bisection and false position methods may also be used.

2.2 Shape of the Earth

2.2.1 WGS-84 Ellipsoid Parameters

While use of a spherical earth model is basic to much of the analysis herein, the most-accepted
model for the shape of the earth is an oblate spheroid (ellipse rotated about its minor axis). The
term “ellipticity error’ is used for differences between distances or angles found using a spherical
earth model and the same quantities found using an ellipsoidal model.

The World Geodetic Survey 1984 (WGS-84) model parameter are the ellipsoid’s semi-major
axis, a, and the flattening f. Their numerical values are

= q=6,378,137m (WGS-84)

Eq 23
= f=1/298.257,223,563 (WGS-84) f
Flattening of the ellipsoid is defined by Eq 24, where b is the semi-minor axis.
a—>b
= Eq 24
f=— q

In computations, the square of the eccentricity e? is frequently used in lieu of the flattening.

a? — b?

e =——=2f—f2=f2- ) Eq 25

Although the earth’s shape is not a sphere, it is nearly so. A useful ‘rule of thumb’ is that the
ellipticity error in the computed length of a path is 0.3%. The basis of this estimate is that the
earth’s flattening is approximately 0.003353, or 0.34%. Subsection 4.8.7 contains examples of
the ellipticity error in computing the ranges between selected airports.

In the U.S., the foot is the most common unit of distance. As a result of the International Yard
and Pound Agreement of July 1959, the international foot is defined to be exactly 0.3048 meter.
Thus
» a=20,925,646.3 ft (WGS-84)
= b= (1-f)a =6,356,752.3 m = 20,855,486.6 ft (WGS-84) Eq 26
= ¢2=0.006,694,379,990,14 (WGS-84)

In marine and aviation applications, the nautical mile (NM) is usually used as the unit of
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distance. The international nautical mile was defined by the First International Extraordinary
Hydrographic Conference in Monaco (1929) as exactly 1,852 meters. This definition was
adopted by the United States in 1954. The international nautical mile definition, combined with
the definition for the foot cited above, result in there being 6,076.1155 feet in one nautical mile.

2.2.2 Radii of Curvature in the Meridian and the Prime Vertical

To approximate the ellipsoidal earth at a location on its surface by a sphere, two radii of curva-
ture (RoCs) are commonly defined — the RoC in the meridian (north-south orientation), R,,,
and the RoC in the prime vertical (east-west orientation), R,,, (Ref. 7). These RoCs lie in
orthogonal planes that include the normal (perpendicular line) to the surface of the ellipse. Their
values are a function of the geodetic latitude L of the location involved — see Appendix (Section
9.3). Their analytic expressions are shown in Eq 27 and they are plotted in Figure 5.

R = a(l—e?) 3 a’b?
™ [1—e2sin2(L)]3/2  [a%cos2(L) + bZsin2(L)]3/2
) Eq 27
R - a 3 a
W [1 —e2sin2(L)]Y/2  [a2cos2(L) + b2sinZ(L)]1/2

The R, RoC in Eq 27 can vary more widely than the rule of thumb for ellipticity error. Figure 5
shows that while R,,, does change by about 0.34% between the Equator and a Pole, R,,; changes
by slightly over 1%. Excursions of the radius of curvature from a reasonable average value will
usually be greater, on a percentage basis, than the ellipticity error in a path length.

The RoC in an arbitrary vertical plane that includes the normal to the ellipse and makes azimuth
angle ¥ with north is given by (Ref. 7):
1 cos?(y) sin?(y)
+
Y Rns Rew

Eq 28

The average of Ry, over 0 < ¥ < 2m (at a given latitude) is the Gaussian radius of curvature R

a(1-/£)

Rg = VRns Rew = 1 — e?sin?(L)

Eq 29

In some applications, a global approximation to R, (independent of latitude) may be sufficient.
One such approximation is the arithmetic mean of the three semi-axes of the ellipsoid

Re,meanzé(a‘}'a‘l'b):(l_%f)a Eq 30

Thus
*  Remean = 6,371,008.8 m = 20,902,259.7 ft (WGS-84) Eq 31
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Figure 5 Ellipsoidal Earth’s Radii of Curvature, Normalized to the Semi-Major Axis

When analyzing procedures for the FAA and other U.S. Government agencies with an aviation
mission, the value of R, to be used is defined in Ref. 2:
* Rererps = 20,890,537 ft (U.S. TERPS) Eq 32

An earth-centered, earth-fixed (ECEF) Cartesian coordinate frame for an ellipsoidal model of the
earth is defined in the Appendix (Section 9.3).

2.2.3 Methods for Addressing an Ellipsoidal Earth

During approximately the past half-century, there has been a resurgence of interest in ellipsoidal
earth models. Reasons for this interest include: (1) wide availability of machine-based compu-
tational capabilities, (2) deployment of accurate long-range radionavigation systems, and

(3) development of long-range weapons systems. Much of the recent work derives from two
volumes by Helmert™ which were published in the 1880s (Ref. 8) and translated into English
(Ref. 9) in the 1960s.

Andoyer-Lambert Formula — The Andoyer-Lambert formula results from expansion of the
geodesic (shortest) arc between two points on a reference ellipsoid to first-order in the flattening
(Ref. 10). This approximation was widely used in conjunction with both the Loran-C (Ref. 11)
and Omega (Ref. 12) radionavigation systems. Accuracy for the Andoyer-Lambert formula is

* Friedrich Robert Helmert (July 31, 1843 — June 15, 1917) was born in Freiberg, Kingdom of Saxony (now
Germany). According to Wikipedia, his texts “laid the foundations of modern geodesy”.
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10 m for distances up to 6,000 miles (Ref. 11).

Sodano’s Method — In a series of papers published between 1958 and 1968, Sodano” described
approximate solutions to the Direct and Indirect problems of geodesy based on expansion of the
arc length between two points to higher orders in the eccentricity (Refs. 13, 14 and 15). Quoting
Ref. 13: “The accuracy of geodetic distances computed through the e?, e*, €% order for very long
geodesics is within a few meters, centimeters and tenth of millimeters respectively. Azimuths are
good to tenth, thousandths and hundreds thousandths of a second. Further improvement of results
occurs for shorter lines”.

Vincenty’s Method — During the early 1970s, Vincenty" revisited the issue of geodesics on an
ellipsoid. He developed and programmed a version of earlier algorithms (including Helmert’s)
for a calculator. To accommodate the available computing technology, Vincenty’s primary
concern was minimizing the program’s memory consumption. Accordingly, he developed
iterative algorithms for both the Direct and Indirect problems of geodesy (Ref. 16).

Due to its ease of coding, Vincenty’s algorithms are now the most widely used method for
computing geodesics on an ellipsoidal earth. Their accuracy is quoted as less than one milli-
meter, which has been independently validated by comparison with numerical integration of the
differential equations governing geodesic arcs on an ellipsoid (Ref. 17).

2.2.4 Surface Area of a Spherical Earth Visible to a Satellite

If the earth is modeled as a sphere with radius R,, its surface area is 4wR?. The surface area
enclosed by a circle on the surface of that sphere is

A =2m(R,)?[1 - cos(6)] Eq 33

Here 6 is the half-angle of the cone, with apex at the center of the spherical earth, whose
intersection with the surface forms the circle under discussion. In Figure 1, the cone would be
formed by rotating line OU about line ON. Thus A is the area of the earth visible to satellite S at
altitude h when the user’s elevation angle a or larger. An expression for the cone angle 8 as a
function of the satellite altitude h and user’s elevation angle « is provided subsequently (Eq 40).

* Emanuel Sodano worked at the U.S. Army Map Service and the Army Geodesy, Intelligence and Mapping
Research and Development Agency.

" Thaddeus Vincenty worked at the U.S. Defense Mapping Agency Aerospace Center, Geodetic Survey Squadron,
Warren Air Force Base, in Wyoming.
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3. TWO-POINT / VERTICAL-PLANE FORMULATION

3.1 Mathematical Problem and Solution Taxonomy

3.1.1 Mathematical Formulation

In mathematical terms, the objective of this chapter is to analyze a plane triangle similar to UOS
in Figure 1. A plane triangle is fully described by its three sides and three interior angles (or
quantities having a one-to-one relationship with these six quantities). However, since the interior
angles of a plane triangle (quantified in radians) must sum to 7, interest can be limited to two
interior angles (or their one-to-one equivalents). Thus, in Figure 1, any three of the five
quantities R,, h, d, « and 6 can be selected independently (noting that at least one quantity must
be a side), and the other two quantities will be (almost) uniquely determined. In this analysis,

= The angle having its vertex at the satellite S has a secondary role and is treated as a
dependent variable.

= The earth's radius R, is assumed to be a known parameter, rather than a variable.

Consequently, the purpose of this chapter is to provide solutions for any one of the four variables
(h, d, a, 0) as a function of any two of the remaining variables (and the known parameter R,).
When a known user altitude hy; is introduced in Section 3.2, h is a surrogate for hg - hg.
However there is no change in the number of known/unknown quantities or to the solution
methodology.

3.1.2 Taxonomy of Solution Approaches

Calculating any one variable (of four possible) as a function of any two (of three possible) other
variables results in a total of 12 equations. These equations are addressed in the following
sections of this chapter and are described Table 4. In the fourth column of the table, the classic
trigonometric terminology for ‘solving a triangle’ is utilized — e.g., SAS denotes two sides and
the included angle (Ref. 18).

Two complications can arise when “solving a triangle’. One is that — due to measurement errors
or other reasons — the values for the independent variables are not consistent with a valid tri-
angle. For example: in an ASA situation, the two known angles may sum to 7 or greater; in an
SSS situation, one side may be longer than the sum of the other two. A second complication can
occur when the three quantities available are consistent with a valid triangle; they may in fact be
consistent with two triangles (ambiguous solution). This can only occur for the SSA taxonomy
category, and only when the available angle is adjacent to the longer of the two available sides.
Sections 3.2 through 3.6 address these complications.
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Table 4 Taxonomy for the Vertical Plane Triangle OUS in Figure 1

arable: | voriable_|Subsection| IOES | o mvanteed? | Uique? | Solution Method
h&a 6 3.3.1% SSA No No Law of Sines
h&d 2] 333 SSS No Yes Law of Cosines
d&a 2] 3.3.4¢ SAS Yes Yes Law of Sines
h&@o a 3.4.1% SAS Yes Yes Law of Sines
h&d a 3.43 SSS No Yes Law of Cosines
d&6 a 3.4.4 SSA No No Law of Sines
h&6 d 3.5.1 SAS Yes Yes Law of Cosines
h&a d 3.5.2 SSA No No Law of Cosines
0&a d 3.5.3 ASA No Yes Law of Sines
d&6 h 3.6.1 SSA No No Law of Cosines
d&a h 3.6.2 SAS Yes Yes Law of Cosines
0&a h 3.6.3 ASA No Yes Law of Sines

* Side OU, length R,, is always known.
t SAS = side-angle-side; ASA = angle-side-angle; SSS = side-side-side; SSA = side-side-angle.
¥ The following subsection contains an alternative solution method for the same set of variables.

There are often alternatives to solution approaches based on the law of cosines and of sines. Four
are presented herein — three based on the law of tangents and one on the quadratic equation.

3.1.3 Detailed Geometry

Figure 6 is a more detailed depiction of the vertical-plane problem geometry shown in Figure 1.
For each of vertex of triangle OUS, a line is constructed that intersects the opposite side (or an
extension thereof) in a right angle. (Similar lines are created in some proofs of the law of sines
and law of cosines.) The intersection points are labeled A, B and C. Because triangle OUS is
oblique, intersections points B and C are outside the perimeter of OUS. Each constructed line
results in the creation of two right triangles (for example, line OC creates right triangles OCU
and OCS). Thus its length can be found from each of the two right triangles. Because the angles
at B or C are constructed as right angles, it follows that zBSU = a and 2COU = a. Figure 6
also introduces the chord UN, which relates to the half-angle ¥26. Color-coded distances (violet)
and angles (blue) associated with these lines and points are also shown.
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d sin(6+a)

R,+h

Figure 6 Detailed Geometry for Vertical Plane Formulation

3.2 Accounting for Known User Altitude

3.2.1 Need to Account for User Altitude

The equations in Section 3.3 through 3.6 — which address the vertical plane containing the
User’s location U, the Satellite’s location S and the earth’s surface center O (Figure 1) — can
be developed assuming that U is on the earth’s surface. The equations that result are sufficient
when S represents an actual, earth-orbiting satellite, as their minimum satellite altitudes are
hundreds of miles. Moreover, in situations involving satellites, if more accuracy is needed, one is
generally free to re-define the earth’s radius to include the elevation of U above, say, sea level.

However, the “vertical situation’ is very different when S represents an airplane. At most,
aircraft are only a few miles above the earth’s surface. Additionally, absent a compelling reason
to do otherwise, in aviation, the earth’s radius corresponds to sea level (this information is
provided by a baro-altimeter — see Subsection 9.1.1) and should not be redefined. Thus, for
aviation, the altitude of U, while known, must be explicitly accounted for.

Subsection 3.2.2 shows how to modify the equations in Section 2.1 to account of a non-zero,
known user elevation/altitude, and Subsection 3.2.3 shows how to select the user altitude to
ensure an unblocked line-of-sight to a satellite at a given distance or altitude (which is not
guaranteed by the equations in Section 3.3 through 3.6).
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3.2.2 Method of Accounting for Known User Altitude

In many situations, there is no concern about the line-of-sight (LOS) between the ‘User’ U
(generally a sensor) and the “Satellite’ (actual satellite or aircraft) S being blocked by the earth’s
curvature. This is the situation depicted in Figure 1. A method for determining the minimum
elevation angle for which there is no LOS blockage is shown in Subsection 3.2.3.

When the user altitude h; is known, the equations presented in Subsections 2.1.1 and 2.1.2 can
be used with these substitutions to account for a non-zero user altitude:
= R, - R, + hy,and
e e U - - - Eq 34
» h — hg- hy (where hg is the satellite altitude)

3.2.3 Conditions for Unblocked Line-of-Sight (LOS)

The expressions developed in Sections 3.3 through 3.6 require that OUS be a valid geometric
triangle, including one of its degenerate forms. However, they do not require that the LOS
between U and S be unblocked by the earth. The possibility that a signal (or flight) path is
physically blocked must be checked separately, using the expressions in this subsection.

Conditions for which the LOS between two points is unblocked by the earth can be determined
with the aid of Figure 7, which shows the LOS connecting the User U and Satellite S having a
point of tangency T with the earth’s surface. Eq 35 applies to a situation where the user altitude
hy and satellite altitude hg are known and the geocentric angle 8 is be selected to ensure LOS
visibility. Altitudes h;; and hg can be traded off to avoid blockage. If the largest value 6 is
selected consistent with LOS visibility, the variables d, ay; and a, can be found from Eq 36.

Re . hU
0y = arccos (Re n hu) = 2 arcsin m
R, . hy Eq 35
65 = arccos <Re n hs> = 2 arcsin m
0 < 0y + O for LOS visibility, when h; and hg are fixed
For 9 = HU + 95
d = R, tan(8y) + R, tan(fs)
_ ( Re ) =2 . hU
Qy = —arccos R+ hy) —2 arcsin 2R, + 1) Eq 36
Re . hS
g = — arccos (Re n h5> = —2 arcsin m
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0 negative
as shown

Figure 7 Geometry for LOS Signal Path Tangent to the Earth’s Surface

A slightly different situation is the siting a radar at U to provide visibility of an aircraft at S.
Here hg (minimum required coverage altitude) and 8 = 6, + 65 (distance between the location
where the radar is to be installed and the outer boundary of the coverage region) are known.
Then the radar elevation hy is found using Eq 37. If the minimum altitude hy; is selected
consistent with LOS visibility, then d, ay and ag, can be found from Eq 36.

Re hS . hS
65 = arccos <Re n h5> = arccos (1 - R+ h5> = 2 arcsin m
HU = 9 - 95 Eq 37
2 sin?(26y)
h 2( — ) =——2 =R, forLOS visibilit
U cos by e cos(0)) e or visibility

In addition to the above geometric considerations, the analyst should be aware that radar signal
propagation paths, such as US in Figure 7, may be subject to bending caused by changes in
atmospheric density with altitude. A simple, commonly used method for modeling this phenom-
enon is discussed in Subsection 3.7.1.

3.3 Computing Geocentric Angle

3.3.1 Satellite Altitude and Elevation Angle Known — Basic Method

In this subsection, the independent variables are the satellite altitude hg and the elevation
angle a. The dependent variable is the geocentric angle 6. The same pair of independent
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variables is considered in Subsection 3.5.2, in conjunction with determining the slant-range d. In
terms of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation.

Manipulating Eq 5 and using the substitutions of Eq 34 yields the formal solution
R, + hy
R, + hg

6 = —a + arccos ( cos(a)) Eq 38
Due to the possibility of unsolvable formulations and multiple solutions, it is desirable to
consider three cases.

Constraints on Solution Existence — There are two constraints in generating a usable solution
from Eq 38.

= First, assume that « = 0. Since 6 = 0, (R, + hg) cos(@ + @) = (R, + hy) cos(a). Thus,
hs = hy.

= Second, assume that @ < 0. Then (R, + hg) cos(|a| — 6) = (R, + hy) cos(|al). It
follows that (R, + hg) = (R, + hy) cos(a).

These constraints have geometric interpretations. The elevation angle a describes an inclined
line having one end that terminates at U, while the satellite altitude hg describes a circle
concentric with the earth’s center O. For a solution to exist, these loci must intersect. When

a <0, (R, + hy) cos(a) is the shortest distance between the center of the earth O and locus of
points with constant depression angle |a|. This occurs when the triangle OUS has a right angle
at S; then « = —6. These constraints to not prevent the line US from penetrating the earth.

In summary, for a solution to exist:

h¢ >hy; when a=>0

hs = (R, + hy) cos(a) — R, when a<0 Eq 39

Let Arccos and Arcsin denote the principal values of the arccos and arcsin functions,
respectively (Subsection 2.1.6). Then the solution in Eq 38 can be decomposed as follows.

Case: a > 0: This condition eliminates one of the ambiguous solutions that can occur in an SSA
situation. (When a > 0 necessarily hg > hy;.) When it’s satisfied, the unique solution to Eq 38 is

R, + hy
0=—a+A ( )
a rccos R, + hs cos(a)

(R, + hy)sin?(3a) + 2(hs — hy)
R, + hy

Eq 40

= —a + 2 Arcsin \/

Referring to Figure 6, the first line of Eq 40 can also be derived from the right triangle AUS,
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where the length of the adjacent side is (R, + h) sin(6) and the length of the hypotenuse is
(R, + h) sin(0) / cos(a). Since the argument of the Arccos function is smaller than cos(a), it
yields an angle that is larger than a. Thus 8 > 0.

The two lines of Eq 40 are analytically equivalent. The first is more revealing geometrically, and
likely better-conditioned numerically when « is close to Y4m, which can occur in satellite
applications. The second line is better-conditioned numerically when « is small, which occurs
often in aviation applications. This case is the most common in aviation and is the only case
relevant to satellite analysis.

Case: a < 0 & (R, + hy) cos(a) — R, < hg < hy: When both of these conditions are
satisfied, the ambiguous solution for 6 is

R,+h
6 = —a + Arccos (RZ n h: cos(a))
| |Re + hy)sin?(Ra) + L(hs — hy) Eq 4l
= —qa + 2 Arcsin
R, + hg

The + sign ambiguity in Eq 41 cannot be resolved without additional information, except for two
special cases: @ = — m and (R, + hs) = (R, + hy) cos(8). Since the argument of the Arccos
function is equal to or larger than cos(a), it yields an angle that is, at most, equal to |«a|. Thus

0 <0 < 2|al. The ‘=" applies when the geocentric angle satisfies 8 < |a| and the ‘+’ sign
applies when 6 > |a|. Therefore, approximate knowledge of & may resolve the ambiguity.

Case: @ < 0 & hy < hg: The condition hy; < hg eliminates the possibility of an ambiguous
solution in an SSA situation. When both of these conditions are satisfied, the unique solution for
6 is given by Eq 40. The difference in usage is that here @ < 0. This solution necessarily
satisfies 8 = 2|«a].

Special-case checks/examples for Eq 40 include:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the first line of Eq 40 reduces to
R, + hU>
R, + hg
= If the satellite altitude and elevation angle satisfy hg = (R, + hy) cos(a@) — R,, where

necessarily a < 0 (i.e., triangle OUS has a right angle at S), then by eliminating hg the
first line of Eq 41 reduces to

6 = Arccos (

0=—«a

= |If the user and satellite altitudes are equal, h;; = hg (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by eliminating hg the first line of Eq 41 reduces to
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0=—-2a , 6=0
The first solution is consistent with OUS being an isosceles triangle. The second solution
corresponds to the pathological situation where U and S merge.

= |f the elevation angle is a = %n (i.e., S is directly above U), then by substituting this

value the first line of Eq 40 reduces to 0.
6=0

3.3.2 Satellite Altitude and Elevation Angle Known — Alternative Method

An alternative expression for the geocentric angle can be found by starting with Eq 7 (which
involves d, h and a). Then, using Eq 4 to introduce 8 and eliminate d, and using the substitu-
tions of Eq 34, results in:

Re + hS 2 i 2 .
[cos(a)] sin®(6) + [2(R, + hy) (R, + hs) tan(a)]sin(6) £q 42
+ [(hy)? — (hg)? + 2R, (hy — hg)] = 0
This is a quadratic equation in sin(8). Its solution is given by
; —B + VB2 — 4AC
0 = arcsin(x) where x =
24
_ [Reths) - Eq 43
B [cos(a)] , B =2(R. + hy)(R, + hs) tan(a)

C = (hy)* — (hs)* + 2R, (hy — hs) = (hy — hs) (2R, + hy + hg)

The correct value for x must satisfy 0 < x < 1. Thus when « > 0, use of the ‘+’ sign before the
radical appears to be correct.

Special-case checks/examples for Eq 43 include:
= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the expression for sin(8) reduces to
sin2(6) = (hs)? = (hy)? + 2R, (hs — hy) _ (R + hs)? = (Re + hy)?
(Re + hs)? (Re + hs)?

= |f the user and satellite altitudes are equal, h;; = hg (i.e., triangle OUS is isosceles with
OU and OS equal), then by substituting these values, the expression for sin(8) reduces to

sin(8) = —2sin(a) cos(a) = —sin(2a) so 0 = —2a«a

3.3.3 Satellite Altitude and Slant-Range Known

In this subsection, the independent variables are the satellite altitude hg and the slant-range d.
The dependent variable is the geocentric angle 8. The same pair of independent variables is
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considered in Subsection 3.4.2, in conjunction with determining the elevation angle «. In terms
of the classic taxonomy for triangles, this is an SSS (side-side-side) situation.

From Eq 6, and using the substitutions of Eq 34, the geocentric angle 6 is given by
(d—hg+ hy)(d+ hg — hU)>
Z(Re + hU)(Re + hS)

1 [(d—hg+ hy)(d+ hsg — hy)
2 (Re + hy) (R, + hs)

@ = arccos <1 —

= 2 arcsin
Eq 44

1
0 ~ R—sz — (hg — hy)? for hy,hg KR,
e

(s 1(h5_h")2 for |hg—hy| < d
“r N\ 204 or Ms=

Using Figure 6, the first line of Eq 44 can also be derived by applying Pythagoras’s theorem to
right triangle UAS, having hypotenuse d and sides R,sin(0) and h + R.[1 — cos(6)]. The first
two lines of Eq 44 are analytically equivalent. The first is more revealing geometrically and is
better-conditioned numerically when the fraction involved is close to 1 (which can occur in
situations involving satellites). The second line is better-conditioned numerically when the
fraction is much smaller than 1, which is usually the case in aviation applications.

The slant-range d describes a circle about U, while the satellite altitude hg describes a circle
about the earth’s center O. If d and hg include errors, their associated loci may not intersect. In
that case, Eq 44 will not yield a solution for 8. From both geometry and analysis, it is evident
that the requirement for the existence of a solution is that d and hg satisfy d = |hg — hy|. When
a solution exists, it is unique.

Analytically, the condition d > |hg — hy;| ensures that the numerator of the fraction on the right-
hand side of Eq 44 is positive; otherwise the argument of the arccos function would not be valid.
Additionally, for the arccos argument to be valid, that fraction must be less than or equal to 2. In
order for OUS to be a proper triangle, it must be true that d < (R, + hy) + (R, + hg).
Substituting this bound into the fraction yields
(d—hg+ hy)(d + hg — hy) - (2R, + 2hy) (2R, + 2hg)
2(Re + hy)(Re +hs) = 2(Re + hy)(Re + hs)

A common aviation application of Eq 44 is — assuming that the aircraft altitude hg is known —
converting a measured slant-range d to a geocentric angle 8 (which is generally more useful in
geodetic navigation/surveillance calculations). In radar processing, this conversion is termed the
‘slant-range correction’.
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Special-case checks/examples for Eq 44 include:

= If the satellite altitude and slant-range satisfy d? = (R, + hs)? — (R, + hy)? (i.e.,
triangle OUS has a right angle at U), then by eliminating d, the first line of Eq 44
reduces to

R, + hU>
R, + hg
= If the satellite altitude and slant-range satisfy d? = (R, + hy)? — (R, + hg)? (i.e.,

triangle OUS has a right angle at S), then by eliminating d, the first line of Eq 44 reduces
to

0= arccos(

R, +h5>
R, + hy

= |If the user and satellite altitudes are equal, hg = hy (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by eliminating hg, the second line of Eq 44 reduces to

1d
@ = 2 arcsin z
R, + hy

3.3.4 Elevation Angle and Slant-Range Known — Basic Method

0 = arccos(

In this subsection, the independent variables are the elevation angle a and the slant-range d. The
dependent variable is the geocentric angle 8. The same pair of independent variables is
considered in Subsection 3.6.2, in conjunction with determining the satellite altitude hg. In terms
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation.

Eq 4 can be written
R,sin(@) = d cos(a) cos(8) — d sin(a) sin(8) Eq 45

Thus, using the substitutions of Eq 34, the result is

d cos(a)

(R, +hy) +d sin(a))
R, + hy )

d cos(a)

6= arctan(
T Eq 46
=7= arctan (tan(oc) +

The right-hand side of the first line in Eq 46 can also be derived from right triangle OBS in
Figure 6, and is more revealing geometrically. The second line is simply an alternative form, as
the arc tangent function is not ill-conditioned for any value of its argument. No combination of
values for the elevation angle a and slant-range d can be specified for which Eq 46 does not
yield a valid solution for the geocentric angle 6.

Special-case checks/examples for Eq 46 include:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the first line of Eq 46 reduces to
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d
@ = arctan (Re n hU>

= If the elevation angle and slant-range satisfy d = (R, + hy)cos Gn + a) (i.e., triangle
OUS has aright angle at S and a < 0), then by eliminating d, the first line of Eq 46
reduces to
0=—-a
= If the elevation angle and slant-range satisfy d = 2(R, + hy)sin(—a),a < 0 (i.e., are

consistent with OUS being an isosceles triangle with sides OU and OS equal), then by
eliminating d, the first line of Eq 46 reduces to

0 =-2«a
= |f the elevation angle is a = %n (i.e., S is directly above U) oris a = —%n (i.e., Sis
directly beneath U), then by substituting these values, the first line of Eq 46 reduces to
6=0

= |fthe slant-range is d = 0 (i.e., S and U merge), then by substituting this value, the first
line of Eq 46 reduces to

6=0

3.3.5 Elevation Angle and Slant-Range Known — Alternative Method

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and US
and their opposite angles, and using the substitutions of Eq 34, yields

R, +hy —d
1 1 e U l _ 1
6 = ;T — ;@ —arctan (—Re y— tan (471 za)) Eq 47

Special-case checks/examples for Eq 47 are:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, Eq 47 reduces to
R, +hy—d
If, additionally, d = R, + hy (i.e., OUS is an isosceles right triangle), then the
immediately previous expression reduces to 8 = ;.

0 = %T[ — arctan(

= |f the elevation angle is a = %n (i.e., S is directly above U), then by substituting these
values, Eq 47 reduces to
0=0
= |f the elevation angle approaches its minimum possible value, o — —%n (ie., S
approaches a location directly below U), then Eq 47 reduces to
6-0
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3.4 Computing Elevation Angle

3.4.1 Satellite Altitude and Geocentric Angle Known — Basic Method

In this subsection, the independent variables are the satellite altitude hg and the geocentric angle
6. The dependent variable is the elevation angle a. The same pair of independent variables is
considered in Subsection 3.5.1, in conjunction with determining the slant-range d. In terms of the
classic taxonomy for triangles, this is an SAS (side-angle-side) situation.

Manipulating Eq 5 and using the substitutions of Eq 34 yields

(Re + hg) cos(0) — (Re + hy)
(R, + hg) sin(6)
R, + hy Eq 48
(R, + hg) sin(6)
(Re + hy) (hs — hy)

" TRty 0 T Ry <

tan(a) =

= cot(0) —

The expression on the first line of Eq 48 can also be derived from right triangle UBS in Figure 6.
The three lines of Eq 48 are analytically equivalent. The first is more revealing geometrically.
The second line is better suited to satellite applications where R, < hg. Then the second term on
the right-hand side can be regarded as a parallax correction. The third line is better-conditioned
numerically when h; < R, and d < R,, which is generally the case in aviation applications. No
combination of values for the satellite altitude hg and geocentric angle 6 can be specified for
which Eq 48 does not yield a valid solution for the elevation angle a.

Special-case checks/examples for Eq 48 are:

= |If the satellite altitude and geocentric angle satisfy (R, + hy) = (R, + hg) cos(8) (i.e.,
triangle OUS has a right angle at U), then by eliminating hg, the first line of Eq 48
reduces to

tan(a) =0 so a=0
= |If the satellite altitude and geocentric angle satisfy (R, + hy) cos(6) = (R, + hg) (i.e.,

triangle OUS has a right angle at S), then by eliminating hg, the first line of Eq 48
reduces to

tan(a) = —tan(@) so a=-6

= |f the user and satellite altitudes are equal, hy; = hg (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by eliminating hg, the first line of Eq 48 reduces to

tan(a) = —tan (%9) SO a= —%0 for 6 #0

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the first line of Eq 48 reduces to
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R+ hy
57 cos(0)

R, for 6 +#0

3.4.2 Satellite Altitude and Geocentric Angle Known — Alternative Method

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and OS
and their opposite angles, and using the substitutions of Eq 34, yields

_ 1 hs — hy
a = —=0 + arctan I Eq 49
2 (2R, + hg + hy) tan(ze)

Special-case checks/examples for Eq 49 are:

= |f the user and satellite altitudes are equal, hy; = hg (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by substituting for hg, Eq 49 reduces to

az—%e for 6#0

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting for a, Eq 49 reduces to

hs — h

1 S U

tan (10) =

an (30) \/2R6+h5+hu

= |f the elevation angle and geocentric angle satisfy « = —8 (which is consistent with
triangle OUS having a right angle at S), then by substituting for a, Eq 49 reduces to

hy — h

1 U S

t _9 =

an (2 ) \/ZRe + hg + hy

3.4.3 Satellite Altitude and Slant-Range Known

In this subsection, the independent variables are the satellite altitude hg and the slant-range d.
The dependent variable is the elevation angle a. The same pair of independent variables is
considered in Subsection 3.3.3, in conjunction with determining the geocentric angle 8. In terms
of the classic taxonomy for triangles, this is an SSS (side-side-side) situation.

Manipulating Eq 7 and using the substitutions of Eq 34 yields

(hs — hy)? 4+ 2(R, + hy) (hs — hy) — d?

sina) = 2(R, + hy)d £ 50
oy @t R)@ s~ hy) a
R 2(R, + hy)

Using Figure 6, the first line of Eq 50 can also be derived by applying Pythagoras’s theorem to
the right triangle OBS, with the length of the hypotenuse being (R, + h) and the lengths of the
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sides being (R, + d sin(a)) and d cos(a). The two lines of Eq 50 are analytically equivalent.
The first is more revealing geometrically and is better-conditioned numerically when the fraction
involved is close to 1 (which can occur in situations involving satellites). The second line is
better-conditioned numerically when the fraction is much smaller than 1, which is generally the
case in aviation applications.

As noted in Subsection 3.3.3, when the available values for slant-range d and satellite altitude hg
have errors, it is possible to formulate a mathematically infeasible problem. The requirement on
d and hg for mathematical feasibility is that d > |hs — hy|. When a solution exists, it is unique.

To partially validate the geometric analysis analytically, note that if d = hg — hy > 0, then the
first line of Eq 50 reduces to sin(a) = 1. Similarly, if d = hy — hg > 0, then the first line of Eq
50 reduces to sin(a) = —1. Thus the limiting values for d correspond to the limiting values for
«. Moreover, assume that hg > hy and let d = hg — hy; + €, where € can be positive or negative.
Then, to first order in ¢, the first line of Eq 50 reduces to
. 1

sin(a) =1— (hs "y + R. T hy
Thus when € > 0 (i.e., d = hg — hy) the arcsin function has a valid argument, and when € < 0
(i.e., d < hg — hy) the arcsin function does not have a valid argument. A similar analysis can be
done for the situation where hy; > hg.

)s +0(e?) + -

On the second line of Eq 50, the term in large brackets is the height of the satellite above the
tangent plane at the user’s location. It can be interpreted as the satellite altitude relative to the
user altitude, minus a term which corrects for the earth’s curvature.

Special-case checks/examples for Eq 50 are:

= If the satellite altitude and slant-range satisfy (R, + hg)? = (R, + hy)? + d? (i.e.,
triangle OUS has a right angle at U), then by eliminating d, the first line of Eq 50
reduces to

sinfa) =0 so a=0
= |f the elevation angle a = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the first line of Eq 50 reduces to
d* = (Re + hs)z - (Re + hu)z
= |If the user and satellite altitudes are equal, h;; = hg (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by eliminating hg, the first line of Eq 50 reduces to
1
>d
R, + hg

sin(a) = — = —sin (19) SO a= —%6

2
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3.4.4 Geocentric Angle and Slant-Range Known

In this subsection, the independent variables are the geocentric angle 6 and the slant-range d.
The dependent variable is the elevation angle a. The same pair of independent variables is
considered in Subsection 3.6.1, in conjunction with determining the satellite altitude hg. In terms
of the classic taxonomy for triangles, this is an SSA (side- side-angle) situation.

Manipulating Eq 4 and using the substitutions of Eq 34 yields the formal solution

hy
d

R
a=-0+ arccos( ‘ sin(@)) Eq 51

The permissible range for elevation angles is —>m < a < 2mr. Thus the arccos function can yield

two possible values that result in permissible values for a (i.e., ambiguous solutions can occur).
For clarity, the solution to Eq 51 is decomposed into two cases.

Case: d < (R, + hy): In Eq 51, let the principal value (Subsection 2.1.6) of the result of the
arccos function be 2 — 6'. Satisfaction of this condition on d (which virtually always applies in

aviation applications) results in 8" > 6, so the two possible values for a, « = -0 + (%n — 0’)
can both be valid. Thus, the ambiguous solutions to Eq 51 can be written

R, +h
a=-0+ Arccos( Z 7 g sin(H)) Eq 52

This ambiguity cannot be resolved with the information available.

Case: d > (R, + hy): In Eq 51, again denote the principal value of the result of the arccos
function as > — 6'. Satisfaction of this condition (which in practice only applies to satellite
applications) results in 8’ < 6, so of the two possible values for a, « = —6 + (ir — 6"), the *~’

value is not valid. Thus, the unique solution to Eq 51 can be written:

R, + hy

a = —0 + Arccos ( sin(H)) Eq 53

Geometrically, Eq 53 can also be derived from right triangle AUS in Figure 6.

Due measurement or other errors, it is possible that Eq 52 or Eq 53 will not have a solution for
the available values for d and 6. The analytic requirement for a solution to exist is that

d = (R, + hy) sin(68). The geometric interpretation of this condition is that d must be at least
equal to the minimum distance between U and the locus for constant 6.

Special-case checks/examples for Eq 52/Eq 53 are:

= If the slant-range and geocentric angle satisfy d = (R, + hy) tan(8) (which is consistent
with triangle OUS having a right angle at U), then by eliminating d, Eq 52 reduces to the
ambiguous solutions
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a=0 , a=-20
The first solution is also consistent with triangle OUS having a right angle at U.
Concerning the second solution: If the geocentric angle 6 and the computed elevation

angle @ = —26 are substituted in Eq 61, the result is d = (R, + hy)tan(0). Thus, it also
a valid solution to Eq 52.

= If the slant-range and geocentric angle satisfy d = 2 (R, + hy)sin(36) (which is

consistent with OUS being an isosceles triangle with sides OU and OS equal), then by
eliminating d, Eq 52 reduces to the ambiguous solutions

1 3
a=—0 , a=-=0
2 2

The first solution is also consistent with OUS being an isosceles triangle. Concerning the
second solution: If the geocentric angle 6 and the computed elevation angle a = —26 are
substituted in Eq 61, the resultis d = 2(R, + hy)sin(G8). Thus, it also a valid solution
to Eq 52. Because —m < a, the second solution is only valid when 6 < ir.

= |If the slant-range and geocentric angle satisfy d = (R, + hy) sin(8) (i.e., triangle OUS
has a right angle at S), then by eliminating d, Eq 52 reduces to the unique solution
a=-—0

= If the slant-range satisfies d = (R, + hy) (i.e., OUS is an isosceles triangle with sides
OU and US equal), then by eliminating d, Eq 52 reduces to the ambiguous solutions

1 1
a=—m , a=-m—20
2 2

The first solution is the pathological case where O and S merge. The second solution
describes a possible satellite scenario, and includes the limiting situations where the
satellite is directly above the user (a = 3, & = 0) and is on the user’s horizon (a = 0,
0 = im).

4

= |f the geocentric angle is 8 = 0 (i.e., S is above or below U), then by substituting this
value, Eq 52 reduces to the ambiguous solutions

1 1
a=—--mT , aA=-T
2 2

3.5 Computing Slant-Range

3.5.1 Satellite Altitude and Geocentric Angle Known

In this subsection, the independent variables are the satellite altitude hs and the geocentric angle
6. The dependent variable is the slant-range d. The same pair of independent variables is
considered in Subsection 3.4.1, in conjunction with determining the elevation angle a. In terms
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation.

Using the substitutions of Eq 34, Eq 6 can be expressed as

d = y/(hs = hy)? + 2(R, + hy) (R, + hs)[1 — cos(6)] Eq 54
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2
. hy hs hs — hy
ansn(ie) [ ) (12 (LY
e (2 )\] R, R, 2R,sin(36)

hy hs . (hs — hy)?
2R30+ R0 , 0<0«1& hyhs <R,

d ~ R.0 + 3(hy + hs)0 +

The first line of Eq 54 can also be derived by applying Pythagoras’s theorem to right triangle
AUS in Figure 6. As would be expected from this formulation, this expression is symmetric in
hy and hg. The second line is analytically equivalent to the first, but numerically better-con-
ditioned when 8 « 1 and hy, hg < R,, which is typically the case in aviation applications (at the
surface of the earth, & = 1 corresponds to spherical distance of s ~ 3,438 NM). No combination
of values for the satellite altitude hg and geocentric angle 6 can be specified for which Eq 54
does not yield a valid solution for the slant-range d.

Special-case checks/examples for Eq 54 include:
= |f the geocentric angle is 8 = 0 (i.e. U and S lie along the same radial), then the first line
of Eq 54 reduces to
d = |hs — hy]
= |If the satellite altitude and geocentric angle satisfy hg = (R, + hy) / cos(6) — R, (which

is consistent with triangle OUS having a right angle at U), then by eliminating hg, the
first line of Eq 54 reduces to

d = (R, + hy) tan(0)
= |f the satellite altitude and geocentric angle satisfy h¢ = (R, + hy) cos(6) — R, (i.e.,

triangle OUS has a right angle at S), then by eliminating hg, the first line of Eq 54
reduces to

d = (R, + hy) sin(60)

= |If the user and satellite altitudes are equal, h;; = hg (i.e., OUS is an isosceles triangle
with sides OU and OS equal), then by eliminating hg, the second line of Eq 54 reduces to

2(R, + hy) sin (%0)

3.5.2 Satellite Altitude and Elevation Angle Known

In this subsection, the independent variables are the satellite altitude hs and the elevation angle
«. The dependent variable is the slant-range d. The same pair of independent variables is
considered in Subsection 3.3.1, in conjunction with determining the geocentric angle 6. In terms
of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation.

Eq 7 can be expressed, after applying the substitutions of Eq 34, as
d? + [2(R, + hy) sin(a)]d + [(h3 — h%) + 2R, (hy — hg)] =0 Eq 55

The formal solution of Eq 55 is

3-17



DOT Volpe Center

d = —(R, + hy) sin(a) + /(R, + hy)? sin?(a) + (hZ — h%) + 2R, (hs — hy) Eq 56

Due to the sign ambiguity in Eq 56 and the possibility of infeasible problem formulations, it is

advantageous to address this situation in terms of cases. When interpreting the expressions

below, note that the quantity under the radical in Eq 56 can be written in two alternative forms
(R, + hy)? sin?(a) + (hy — hg)(2R, + hg + hy) = (R, + hg)? — (R, + hy)? cos?(a)

Conditions for Solution Existence — Conditions for the existence of a solution are discussed in
Subsection 3.3.1 and summarized by Eq 39, which is repeated here.

h’S > h’U When a 2 O

hs = (R, + hy) cos(a) — R, when a<0 Eq 57

Case: a > 0: The condition @ > 0 eliminates one of the ambiguous solutions that can occur in
an SSA situation. Also, when a > 0, necessarily hg > hy. In this situation, the unique solution
to Eq 56 can be written

d = —(R, + hy) sin(a) + \/(Re + hy)? sin?(a) + (h2 — h%) + 2R, (hs — hy)

x x% x3 (hs — hy)(hg + hy + 2R,)
— 3 - Ll = E 58
d = (R, + hy) sin(a) (2 3 + Te T > , X Ro + hy)? sin?(@) ,a>0 q
s =Ry o hhe <R, & a>0
~ sin(a) or M fis € @

Referring to Figure 6, the first line of Eq 58 can be interpreted as length(CS)-length (CU), where
length(CS) is found by Pythagoras’s theorem applied to right triangle OCS having OS is its
hypotenuse.

Case: ¢ < 0 & (R, + hy) cos(a) — R, < hg < hy: When both of these conditions are satis-
fied, the ambiguous solution is

d = —(R, + hy) sin(a) + \/(Re + hy)? sin2(a) + (hZ — h%) + 2R, (hs — hy) Eq 59

The + sign ambiguity in Eq 59 cannot be resolved without additional information, except
extreme case of a = —%n. The ‘-’ applies when the geocentric angle satisfies 8 < || and the
‘+’ sign applies when 8 > |«|.

Case: ¢ < 0 & hy < hg: The condition hy; < hg eliminates one of the ambiguous solutions that
can occur in an SSA situation. When these conditions are satisfied, the unique solution is

d = —(R, + hy) sin(a) + J(Re + hy)? sin?(a) + (h2 — h%) + 2R, (hs — hy) Eq 60
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This is the same expression as the first line of Eq 58; however, here a < 0.

Special-case checks/examples include:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U) and the satellite
altitude satisfies hg > hy, then by substituting for «, the first line of Eq 58 reduces to

d= \/(Re + hs)z - (Re + hU)2

= |f the elevation angle is a = 57 (i.e., S is directly above U) and the satellite altitude

satisfies hg > hy, then by substituting for a, the first line of Eq 58 reduces to
d = hs - h'U

= |f the elevation angle is a« = — %n (i.e., S is directly beneath U) and the satellite altitude
satisfies hg < hy, then by substituting for a, Eq 59 reduces to
d=hy—hg
= |If the user and satellite altitudes are equal, h;; = hg (i.e., OUS is an isosceles triangle

with sides OU and OS equal), then the elevation angle must satisfy @ < 0 and, by
eliminating hg, Eq 60 reduces to

d = 2(R. + hy) sin(|a]) = 2(R, + hy) sin (36)

= |f the satellite altitude and elevation angle satisfy hg = (R, + hy) cos(a) — R, (i.e.,
triangle OUS has a right angle at S), the elevation angle necessarily satisfies a < 0.
Then by eliminating hg, Eq 59 reduces to

d = (Re + hy) sin(lal)

= |f the elevation angle is a = %n, the user altitude is h; = 0 and the satellite altitude is

hs = 3R, (i.e., an approximation to a GPS user’s situation), then, by substituting these
values, the first line of Eq 58 reduces to d = 3.4R,

3.5.3 Geocentric Angle and Elevation Angle Known

In this subsection, the independent variables are the geocentric angle 8 and the elevation angle «.
The dependent variable is the slant-range d. The same pair of independent variables is
considered in Subsection 3.6.3, in conjunction with determining the satellite altitude hg. In terms
of the classic taxonomy for triangles, this is an ASA (angle-side-angle) situation.

Eq 5 can be written, after applying the substitutions of Eq 34, as

sin(8)

= 5@+ ) (R, + hy) Eq 61

Eq 61 is a manipulation of the two expressions for the length of AU in Figure 6. A valid solution
for d only exists if « + 6 < Sm (because the three angles of a plane triangle must sum to ).
However, due to errors, the available values for « and 8 may sum to 3 (whereby the loci of
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constant elevation angle and constant geocentric angle are parallel) or a larger number (whereby
the loci diverge). When a solution exists, it is unique.

Special-case checks/examples for Eq 61 include:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, Eq 61 reduces to

d = (R, + hy) tan(6)
= |f the elevation angle and geocentric angle satisfy a« = —8 (i.e., triangle OUS has a right
angle at S), then by eliminating «, Eq 61 reduces to

d = (R, + hy) sin(60)
= |f the elevation angle and geocentric angle satisfy a = —%0 (i.e.,, OUS is an isosceles
triangle with sides OU and OS equal), then by eliminating a, Eq 61 reduces to

d =2(R. + hy)sin (36)

3.6 Computing Satellite Altitude

3.6.1 Slant-Range and Geocentric Angle Known

In this subsection, the independent variables are the slant-range d and the geocentric angle 6.
The dependent variable is the satellite altitude hg. The same pair of independent variables is
considered in Subsection 3.4.4, in conjunction with determining the elevation angle a. In terms
of the classic taxonomy for triangles, this is an SSA (side-side-angle) situation.

Eq 6 can be written as a quadratic equation in R, + h. Applying the substitutions of Eq 34 yields
the formal solution

hs = (Re + hy) cos(8) — R, ++/d? — (R, + hy)?[1 — cos?(6)] Eq 62

For a valid solution to exist, the expression under the radical in Eq 62 must be non-negative;
thus, validity requires that d > (R, + hy)sin(6). Because an ambiguous solution is possible, for
clarity, the solution description is decomposed into two cases. Note that, if d = (R, + hy), then
‘-’ solution in Eq 62 reduces to R, + hg = 0.

Case: d < (R, + hy): Satisfaction of this condition on d (which virtually always applies in
aviation applications) ensures, in Eq 62, that (hg + R,) = 0 for both the ‘+’ and ‘-’ signs and
any value of 8. Thus, the ambiguous solutions to Eq 62 can be written

hs = (R, + hy) cos(6) — R, ++/d? — (R, + hy)? sin2(h)

] Eq 63
= hy — 2(Re + hy)sin®(50) £ v/d — (R, + hy)sin(8)y/d + (R, + hy)sin(6)

The two lines of Eq 63 are analytically equivalent. However, the second line is numerically
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better-conditioned when 6 is small, as is often the case in aviation applications. The choice
between the ‘+” and ‘-’ signs cannot be resolved from the information available.

Case: d > (R, + hy): Satisfaction of this condition (which in practice only applies to satellite
applications) ensures, in Eq 62, that, for the *~” sign and any value of 8, R, + hg < 0, and thus is
invalid. Therefore, the unique solution to Eq 62 can be written:

hs = (R, + hy) cos(0) — R, + /d? — (R, + hy)? sin2(0) Eq 64

Referring to Figure 6, Eq 64 can be interpreted as length(AS)-length(AN), where length(AS) is
found by Pythagoras’s theorem applied to right triangle AUS. Another interpretation is that hg is
the projection of R, + hy; onto OS, with R, then subtracted, followed by an adjustment for the
length of d in excess of the minimum distance between U and OS. The solutions in Eq 63 and
Eq 64 both require that (hg + R,) = 0, which is equivalent to requiring that OUS form at least a
degenerate form of a triangle.

Special-case checks/examples for Eq 63/Eq 64 include:

= |f the geocentric angle satisfies 8 = 0 (i.e., S is above or below U), then by substituting
this value, Eq 63 reduces to

hS:hUid

= If the slant-range and geocentric angle satisfy d = (R, + hy) sin(8) (which is consistent
with triangle OUS having a right angle at S), then by eliminating d, the first line of in the
first line of Eq 63 the expression under the radical is zero and the unique solution is
hs = (R, + hy) cos(6) — R,
This solution is consistent with triangle OUS having a right angle at S.

= If the slant-range and geocentric angle satisfy d = (R, + hy) tan(8) (which is consistent
with triangle OUS having a right angle at U), then by eliminating d, the first line of Eq
63 reduces to the ambiguous solutions

Rethy) ) o Rethy)

cos(6) cos(0)

The first solution is consistent with triangle OUS having a right angle at U. Concerning

the second solution: If the geocentric angle 8 and the computed satellite altitude hg are

substituted in Eq 54, the result is d = (R, + hy)tan(0). Thus, it is also a valid solution

to Eq 63.

= If the slant-range and geocentric angle satisfy d = 2(R, + hy) sin(36) (which is
consistent with OUS being an isosceles triangle with sides OU and OS equal), then by
eliminating d, the first line of Eq 63 reduces to the ambiguous solutions
hs=hy , hs=hy—4QR, + hy)sin?(GH)

The first solution is consistent with OUS being an isosceles triangle. Concerning the
second solution: If the geocentric angle 8 and the computed satellite altitude hg are
substituted in Eq 54, the resultis d = 2(R, + hy) sin(50). Thus, it is also a valid

hs = —R, cos(26)
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solution to Eq 63.

3.6.2 Slant-Range and Elevation Angle Known

In this subsection, the independent variables are the slant-range d and the elevation angle a. The
dependent variable is the satellite altitude hgs. The same pair of independent variables is
considered in Subsection 3.3.4, in conjunction with determining the geocentric angle 6. In terms
of the classic taxonomy for triangles, this is an SAS (side-angle-side) situation.

Rearranging Eq 7 and using the substitutions of Eq 34 yields

hs = =R, ++/(Re + hy)? + d? + 2(R, + hy)dsin(a)
x x? x3 2dsin(a) d?

hs=nh R, +h ———+—+ - f = Eq 65

s = hy + (R + U)<2 g 16 T ) o X =R TTh, TR+ hy)? |

hs = hy + dsin(a) for d < R, + hy

Referring to Figure 6, the first line in Eq 65 can be interpreted as length(OS)-length(ON), where
length(OS) is found by Pythagoras’s theorem applied to right triangle OBS. The first two lines
of Eq 65 are analytically equivalent. The first is more revealing geometrically. The second line is
better-conditioned numerically when h;; < R, and d < R, which is generally the case in
aviation applications. The quantity under the radical on first line of Eq 65 is guaranteed to be
non-negative. Thus, no combination of values for the slant-range d and elevation angle a can be
specified for which Eq 65 does not yield a valid solution for the satellite altitude h.

Special-case checks/examples for Eq 65 are:

= |f the elevation angle is @ = 0 (i.e., triangle OUS has a right angle at U), then by
substituting this value, the first line of Eq 65 reduces to

hs = —R, + (R, + hy)? + d?

= |If the slant-range and elevation angle satisfy d = (R, + hy) sin(—a) where @ < 0 (i.e.,
triangle OUS has a right angle at S), then by eliminating d, the first line of Eq 65 reduces
to

hs = —R, + (R, + hy)cos(—a)

= If the slant-range and elevation angle satisfy d = 2(R, + hy) sin(—a) where @ < 0 (i.e.,
are consistent with OUS being an isosceles triangle with sides OU and OS equal), then
the first line of Eq 65 reduces to

hs = hU
= If the elevation angle is & = m (i.e., S is directly above U), then the first line of Eq 65
reduces to
h'S = hU + d

= If the elevation angle is « = —m (i.e., S is directly beneath U), then the first line of Eq
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65 reduces to

3.6.3 Elevation Angle and Geocentric Angle Known — Basic Method

In this subsection, the independent variables are the elevation angle a and the geocentric angle 6.
The dependent variable is the satellite altitude hg. The same pair of independent variables is
considered in Subsection 3.5.3, in conjunction with determining the slant-range d. In terms of the
classic taxonomy for triangles, this is an ASA (angle-side-angle) situation.

Manipulating Eq 5 and using the substitutions of Eq 34 yields

cos(a) cos(a)
S_W(Re-l_hU)_Re_hU+<COS(a—+8)_1>(Re+hU)
sin(a + 20) sin (36
—hy+2 (a +30) (2)(Re+hu) Eq 66

cos(a + 0)
hszhu+e(a+%0)Re for @<« 1,0<«<1,hy <R,

Eq 66 can also be derived by manipulating the two expressions for the length of OC in Figure 6.
The first two lines of Eq 66 are analytically equivalent. The first is more revealing geometrically.
The second line is better-conditioned numerically when h; <« R, and both angles are small,
which is generally the case in aviation applications.

A valid solution for hg only exists if « + 6 < Zm (because the angles of a plane triangle must
sum to ). However, due errors, the available values for « and 6 may sum to >r (whereby the

loci of constant elevation angle and constant geocentric angle are parallel) or a larger number
(whereby the two loci diverge). When a solution exists, it is unique.

Special-case checks/examples for Eq 66 include:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then the first
line of Eq 66 reduces to

R, + hy
s = cos(9) ¢
= |f the elevation angle and geocentric angle satisfy a« = —6 (i.e., are consistent with
triangle OUS having a right angle at S), then the first line of Eq 66 reduces to
hs = (R, + hy)cos(8) — R,

= |f the elevation angle and geocentric angle satisfy a = —%6 (i.e., are consistent with

OUS being an isosceles triangle with sides OU and OS equal), then the first two lines of
Eq 66 reduce to

hsth
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3.6.4 Elevation Angle and Geocentric Angle Known — Alternative Method

The law of tangents (Eq 8) applied to triangle OUS (Figure 1), specifically to sides OU and OS
and their opposite angles, and using the substitutions of Eq 34, yields

_hy+ (2R, + hy)tan(a + %H)tan(%e) _ (2Re+ hy) + hycot(a + %0)cot(%9)
5 1- tan(a + %H)tan(%e) B cot(a + %0)cot(%9) -1 Eq 67
hsth+9(a+%0)Re for a<«<1,0<«<1,hy <R,

Special-case checks/examples for Eq 67 are:

= |f the elevation angle is « = 0 (i.e., triangle OUS has a right angle at U), then the first
line of Eq 67 reduces to
R, + hy
= —R
57 cos(0) ¢

= |f the elevation angle and geocentric angle satisfy a = —%6 (i.e., are consistent with

OUS being an isosceles triangle with sides OU and OS equal), then the first line of Eq
67 reduces to

h’S = h’U
= |f the elevation angle and geocentric angle satisfy a« = —6 (i.e., are consistent with
triangle OUS having a right angle at S), then the first line of Eq 67 reduces to
hs = (R, + hy)cos(8) — R,

3.7 Example Applications

Three example applications are presented in this section, with the intent of providing a sense of
how the mathematical equations presented earlier in this chapter relate to real problems. The
examples are intended to illustrate that it is necessary to understand the application in order to
utilize the equations properly and to interpret the results. Also, these examples suggest that,
while providing useful information, the equations in this chapter cannot answer some relevant
question. For that reason, the same examples are re-visited at the end of Chapter 4.

3.7.1 Example 1: En Route Radar Coverage

Application Context — A frequent surveillance engineering task is predicting a radar instal-
lation’s “coverage’. There are two common formulations: Calculate either the minimum visible
aircraft (a) Elevation MSL for a known ground range (geocentric angle) from the radar; or

(b) Ground range (geocentric angle) from the radar, for a known elevation MSL. For either case,
the issues to be considered, and the approach taken herein, are:

= Terrain Effects — As stated in Chapter 1, blockage of electromagnetic waves by
hills/mountains/structures is not addressed herein. These effects would be included in a
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more thorough analysis, and are particularly important in mountainous areas. However,
terrain effects are handled numerically, rather than by an analytic model, and are thus
outside the scope of this document. The earth surrounding the radar is assumed to be
smooth, although not necessarily at sea level.

= Propagation Model — As stated in Chapter 1, real sensors may not have the straight line
propagation paths. Relevant to radars: electromagnetic waves behave according to Snell’s
Law and refract towards the vertical as the atmospheric density increases with decreased
altitude. Refraction effects are most pronounced for long, predominantly horizontal paths
within the earth’s atmosphere (such as occur for an en route radar). A widely used model
that approximates the effects of refraction and is compatible with the equations developed
earlier in this chapter is the “four-thirds earth” model (Refs. 19 and 20). According to
Ref. 19: “The 4/3 Earth radius rule of thumb is an average for the Earth's atmosphere
assuming it is reasonably homogenized, absent of temperature inversion layers or unusual
meteorological conditions.” Ref. 20 is an in-depth treatment of radar signal refraction.

= Radar Antenna Height — Three values are used for the height of the radar antenna
phase center above the surrounding terrain, hy;: 50 ft, representative of the antenna height
for a radar mounted on a tower; 500 ft, representative of the antenna height for a radar on
a hill top; and 5,000 ft, representative of the antenna height for a radar on a mountain top.

Based on these considerations, the two known/independent variables are taken to be:

(1) The satellite/aircraft elevation angle a (provided it is equal to or greater than the
minimum value for the associated antenna height h); and

(2) Either

(a) The geocentric angle 8 between the radar and a target aircraft (so the unknown/
dependent variable is the aircraft altitude hg above the terrain) — governed by Eq 66; or

(b) The aircraft altitude hs (so the unknown/dependent variable is the geocentric angle 8)
— governed by Eq 40.

Associating U with the radar antenna location (because its elevation is known) and S with
aircraft locations, the resulting equations are shown in Eq 68 below. The first line is derived from
Eq 66, with substitutions to account for the four-thirds earth model. Similarly, the second line, is
derived from the second line of Eq 40. Also included is the equation for the geocentric angle 6,
between the radar and the location T where the signal path (for elevation angle «,,,;,,) is tangent
to the earth (Figure 7). In Eq 68: Arcsin and Arccos yield the smallest non-negative angle
solution for arcsin and arccos, respectively; and on the second line, the “+’ is correct except when
a < 0 and the aircraft is between the radar U and the radial passing through the point of
tangency T.

cos(a) 4
hs=hy+|———=——-1])|zR.+h , A= Uy
S U (COS(CZ + %9) >(3 e U) min
. E
4 8 _ (%Re + hU)smz(%a) + %(hs — hy) q68
0 = ——a £ = Arcsin T , 2= QApin
3 3 3Re + hg
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A ( iRe > 2A . hU

Apin = —AI'CCOS | 7/ | = — rcsin —_—

mn 2Re + hs 2(3R. + hs)
Oy = 3 Amin

The results of exercising the first line of Eq 68 are shown in Figure 8. The maximum range
depicted, 250 NM, is the specified value for current en route ATC radars (e.g., ARSR-4 and
ATCBI-6). Curves are shown that correspond to three radar elevations above mean sea level
(MSL) when a = a,,;», the theoretical minimum elevation angle for which targets are visible
(blue) and for @ = a,,,;,,+1 deg larger than the minimum elevation angle (violet). Aircraft whose
range / altitude combinations are above a given curve are visible to the radar; otherwise they are
said to be *below the radar horizon’. If the visibility of aircraft relative to terrain (rather than
mean sea level) is needed, the elevation of the terrain is subtracted from the MSL values in
Figure 8.
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Figure 8 Minimum Visible Altitude vs. Range for Three Radar Antenna Altitudes
Sensitivity to radar antenna elevation — Increasing the height of the radar’s antenna decreases
the minimum altitude at which aircraft are visible. In this example, at the maximum radar range,

raising the antenna from 50 feet to 5,000 feet decreases the visible aircraft altitude by almost
21,000 feet — i.e., the ratio is greater than 4:1. The reason can be appreciated by examining
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Figure 7. Line US acts like a lever arm with its fulcrum at T. Raising U lowers S, and since T is
generally closer to U than S, the change in the elevation of S is greater than it is in U.

Sensitivity to antenna boresight angle — Increasing the elevation angle of a radar antenna
above the minimum required to avoid blockage of the signal by the earth has a significant
coverage penalty. At the radar’s maximum range, a 1 degree increase in elevation angle corres-
ponds to an increase in the minimum altitude at which targets are visible by approximately

Ao d = (1 deg)(n rad/180 deg)(250 NM)(6,076 f/NM) =~ 26,500 feet Eq 69

The resulting decrease in surveillance coverage is more than is gained by raising the radar
elevation to 5,000 feet. Thus, aligning (often called ‘bore sighting’) the antenna is an important
aspect of a radar installation.

Cone of Silence — “Visibility’ is necessary for an aircraft to be detected by a radar. But it is not
sufficient. Energy transmitted by the radar must reach the aircraft; then, energy scattered (pri-
mary radar) or transmitted (secondary radar) by the aircraft must return to the radar at a detec-
table level. When a radar performs well for most targets (the case here) and a target is visible, the
determining factor for detectability is the antenna pattern. ATC radar antennas are designed to
have their gain concentrated near the horizon, where most aircraft are. Conversely, ATC radar
antenna are not designed to detect aircraft almost directly above them (the ‘cone of silence’).

A ‘rule of thumb’ for detecting a target by an ATC radar is that the target range be at least twice
its height above the radar antenna — e.g., an aircraft at 10,000 ft above the antenna would not be
detected when less than 20,000 ft or 3.3 NM from the radar (Ref. 21). Figure 8 includes the pre-
dicted cone of silence for an ATC radar antenna on the surface; larger antenna elevation values
will result in slightly smaller cones of silence. Generally, the cone of silence is an issue to be
aware of, but is not a major concern.

Targets ‘Below’ the Radar — While the cone of silence is a concern for aircraft nearly above a
radar, when a radar antenna is installed significantly higher than the local terrain level, a similar
issue arises for aircraft close to but at lower altitudes than the antenna. Figure 9 depicts the
vertical plane (analogous to Figure 1) containing the radar antenna and the signal paths (for a
4/3" earth model) that are unblocked by the earth for antenna heights of 50 ft, 500 ft and

5,000 ft above the earth. (Data for these curves are the same as data for Figure 8.) The points of
tangency T with the earth’s surface for these signal paths are 8.7, 27.5 and 86.9 NM from the
radar U. Aircraft located between U and T and vertically below the paths that are tangent to the
earth’s surface are visible to the radar (i.e., the propagation paths between those aircraft and the
antenna are unblocked). Whether the radar can detect them is primarily an issue of the antenna
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vertical pattern. Some radars are designed with a ‘look down’ mode to detect such aircraft. Thus,
Figure 8 and Figure 9 may understate coverage for such targets.

Earth Model — For either the standard-size or 4/3" earth model, the minimum visible aircraft
altitudes are small at short ranges, and model differences are not important. However, the
minimum visible altitudes for the separate models, and their differences, are substantial at longer
ranges. For example, at a ground range of 250 NM, the predicted visible aircraft altitude for a
4/3"% earth model is less than that for a normal-size earth by between 13.4 kft (for a radar
antenna elevation of 50 ft) and 9.4 kft (for a radar antenna elevation of 5,000 ft).

2

Vertical Plane Height from Radar (NM)
SN

m—Earth's Surface
| = =150 foot High Antenna

= = =500 foot High Antenna
— = 5,000 foot High Antenna

0 50 100 150 200 250
Vertical Plane Range from Radar (NM)

Figure 9 Radar Minimum Visible Altitude vs. Horizontal Range

-10

3.7.2 Example 2: Aircraft Precision Approach Procedure

Design of a Precision Instrument Approach Procedure (IAP) is a straightforward application of
the analyses in this chapter. The RNAV (GPS) LPV approach to Kansas City International
Airport (MCI) runway 19L is selected as an example. The approach plate is shown as Figure 10.

The first consideration is that, since the navigation fixes on the approach plate quantify vertical
height in terms of altitude MSL, the same quantity must be used for procedure design. Second,
the user location U is chosen as the point where aircraft crosses the runway threshold. The
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elevation above MSL of U is the sum of the elevation of the runway threshold (THRE = 978 ft)
and the threshold crossing height (TCH = 59 ft); thus, hy = hy = 1,037 ft (where T denotes
threshold).
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Figure 10 Approach Plate: RNAV (GPS) Y for MCI Runway 19L

In terms of the four variables defined in Subsection 3.1.1, the elevation angle « is set equal to the
specified glide path (GP) angle — i.e., @ = 3.00 deg — and is one independent variable. The
second independent variable describes movement along the approach route. Either 6 or hg = hy
(A denoting aircraft) could be used; in this example, 6 is selected because it has fewer draw-
backs. While its published precision (0.1 NM) is less than desired, the limits of its precision are
known. Conversely, only lower bounds for h, are specified on the approach plate; the amount
that each is below the glide path angle is not known. (A reason for selecting this example is that
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there are six positions along the approach route where the minimum altitude MSL is stated.)

For this set of variables — a and 6 known, and h, unknown — Subsection 3.6.3 provides the
solution (Eq 66). Evaluating this equation, repeated here as Eq 70, using the TERPS value for R,
(Eq 32), yields Table 5.

by = =Ry +—2D _p 4 h) Eq 70
A7 ¢ Tcos(a+0) ¢ T f

Table 5 Specified and Computed Fix Altitudes for MCI Runway 19L LPV Approach

Fix Name UMREW | FELUR | REMNS | ZASBO | YOVNU | GAYLY
Dist. from Threshold, NM (Figure 10) 1.9 4.9 6.2 9.3 12.4 155
Chart Min. Altitude, ft MSL (Figure 10) 1,640 2,600 3,000 4,000 5,000 6,000
Computed GP Altitude, ft MSL (Eq 70) 1,645 2,619 3,046 4,075 5,122 6,187

The computed values in the last row of Table 5 are slightly larger than the published minimum
altitudes in Figure 10. Since published minimum altitudes are usually rounded down to the
largest multiple of one hundred feet, it is reasonable to conclude that the 1AP design process
described in the subsection closely replicates FAA process.

3.7.3 Example 3: Satellite Visibility of/from Earth

A question that is readily addressed using the equations in this chapter is: What fraction of the
earth’s surface can see (and be seen by) a satellite at altitude hg? Clearly, hg is one independent
variable in such an analysis. The other independent variable is taken to be the minimum
elevation angle a (often called the mask angle in this context) at which the satellite provides a
usable signal. The quality of signals received at low elevation angles can be degraded due to
multipath and attenuation by the atmosphere; and terrain blockage is an issue at low elevation
angles. The dependent variable is taken to be 6, the geocentric angle between the satellite nadir
N and the user U. For this set of variables, Subsection 3.3.1 provides the solution approach.

An issue is whether to use a normal-size or 4/3rds earth model. Here, normal-size is selected,
because (unlike radar signals) satellite signals are outside of the earth’s atmosphere over most of
their propagation path. The earth’s atmosphere extends to an altitude of approximately 5 NM,
while satellite altitudes are at least several hundred nautical miles. The basic equation to be
evaluated is thus taken from Eq 40. To visualize the impact of satellite altitude on visibility, a
modified version of Eq 33 is used to generate Figure 11.
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4. TWO-POINT / SPHERICAL-SURFACE FORMULATION

4.1 Basics of Spherical Trigonometry

4.1.1 Basic Definitions

Spherical trigonometry deals with relationships among the sides and angles of spherical

triangles. Spherical triangles are defined by three vertices (points
A, B and C in Figure 12) on the surface of a sphere and three arcs
of great circles (a, b and c in Figure 12), termed sides, connecting
the vertices. The angles at the vertices are A, B and C, and the
lengths of the sides are quantified by their corresponding
geocentric angles (a, b and c). In this document, the sphere always
represents the earth.

Spherical trigonometry originated over 2,000 years ago, largely Figure 12 Example
motivated by maritime navigation and understanding the relation- Spherical Triangle

ship of the earth to the *heavenly bodies’. Early contributors were

from Greece, Persia and Arabia. The subject was completed by Europeans in the 18" and 19™
centuries. Until the 1950s, spherical trigonometry was a standard part of the mathematics
curriculum in U.S. high schools (Refs. 22 and 23).

4.1.2 Application to Navigation and Surveillance

In this document, a distinction is made between ‘mathematical’ and ‘navigation’ spherical
triangles. The three vertices of a “mathematical’ spherical triangle can be arbitrarily located on
the surface of a sphere — i.e., all three points can be problem-specific. The sides and interior
angles are all positive in the range (0, w). A “mathematical’ spherical triangle does not have an
defined relationship with the sphere’s latitude/longitude grid.

In contrast, ‘navigation’ spherical triangles involve only two problem-specific locations,
typically labeled U and S in this chapter. The third vertex is chosen as the North Pole P’,
enabling U and S to be related to the latitude/longitude grid. (In many texts, ‘navigation’
triangles are called “polar’ triangles.) Six triangle parts (requiring seven navigation variables)
define a “navigation’ spherical triangle (Figure 13):

* While the North Pole is used in deriving navigation equations, the resulting expressions are valid for points in the
southern hemisphere as well.
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(a) Angular lengths of sides PU and PS —
complements of the latitudes of points U and S,
respectively;

(b) Angle at P — the difference in the longitude of the
points U and S;

(c) Angular length of side US — the geocentric angle
between points U and S; and

(d) Angles at U and S — the azimuth angles of the leg
joining U and S with respect to north.

This chapter is devoted to problems involving two-points
on the surface of a sphere. These can be solved using

navigation spherical triangles. Chapter 6 addresses U(Ly,4p)
situations involving three problem-specific points.

(negative
show:

S (LS ’ j'S)

4.1.3 Applicability to Two-2D Problem Formulation Figure 13 Navigation
Spherical Triangle

A drawback of spherical trigonometry is that it not suited to

problems involving locations above the earth’s surface — i.e., it does not ‘handle’ altitude.
However, the vertical plane defined by two vertices of a spherical triangle and the center of the
sphere conform to the assumptions employed in Chapter 3. Points directly above the two vertices
lie in that plane as well. Thus, for situations involving two problem-specific points, plane and
spherical trigonometry are complementary techniques that can be employed for their analysis.
Moreover, situations involving three problem-specific points can be analyzed in the same way,
so long as the altitude components can be handled in a pairwise manner. Often, problems
involving an aircraft and two navigation or surveillance sensors satisfy this condition.

4.1.4 General Characteristics of Spherical Triangles

The interior angles of a spherical triangle do not necessarily sum to =, and right triangles do not
play as prominent a role as they do in plane trigonometry; interest is largely focused on oblique
triangles. Although Figure 12 and Figure 13 depicts all angles and sides as acute, angles and
sides of mathematical spherical triangles lie in the range (0, ). Angles in navigation analysis
have a wider range of values: latitude varies over [-n/2, n/2], longitude varies over (-x, «],
geocentric angles vary over (0, w) and azimuths vary over (-w, ]. Thus, preferable: latitudes are
found with the arc sine or arc tangent function; longitudes with the two-argument arc tangent;
geocentric angles with the arc cosine; and azimuths with the two-argument arc tangent.
Difference between two longitudes or two azimuth angles may need to be adjusted by +2m, so
that the magnitude of the difference is less than or equal to =.

Two points on a sphere are diametrically opposite (antipodal) if the straight line connecting them

4-2



DOT Volpe Center

passes through the center of the sphere. Mathematically, U and S are antipodal when Ly =- L
and A; = Ay + m. If that is the case, the geocentric angle between U and S is =, and an infinite
number of great circle paths connect U and S. Many spherical trigonometry equations, and
particularly those for azimuth angles, are indeterminate for antipodal points.

The expressions developed in this chapter are based on triangle UPS Figure 13 — specifically,
U is west of S. The positive interior angles of mathematical triangle UPS are: Ag — Ay, ¥s,y,

and 2 — vy s If, in fact, S is west of U, the expressions derived remain correct. It is apparent
(and shown in Subsection 4.6.2) that if 0 < ¥,y < 7 then — < 1,5 < 0, and vice versa.

4.1.5 Resources on the Web

The internet has many useful resources concerning spherical trigonometry. Examples, in

approximate decreasing order of their complexity, are:
= |. Todhunter, Spherical Trigonometry, 5" Edition (Ref. 24) — Written by a British
academic. Considered to be the definitive work on the subject, and readily understood
as well. Later editions were published but are not available without charge.
=  W.M. Smart and R.M. Green, Spherical Astronomy (Ref. 25) — Also written by a
British academics. Chapter 1 is devoted to spherical trigonometry. It has equations
and their derivations (including more complex and useful ones).

= Wikipedia, Spherical Trigonometry (Ref. 26) — A fine collection of equations and
background information.

= Wolfram MathWorld (Ref. 27) — Another good collection of equations

= Ed Williams’ Aviation Formulary (Ref. 28) — A website with equations similar to
those in this chapter, without derivations. Also offers an Excel spreadsheet with
formulas as macros.

= Spherical Trigonometry (Ref. 29) — An easily understood, unintimidating
introduction to the topic.

4.1.6 Key Formulas/ldentities

The key formulas/identities for oblique spherical triangles are presented below. These formulas
presume the existence of a solution — i.e., that the known angles and sides correspond to an
actual triangle. Some formulas do not have a solution if that is not the case.

In general, the labeling of the angles and sides of a spherical triangle is arbitrary. Thus, referring
to Figure 12, cyclic substitutions — i.e., A— B, a — b, etc. — can be made to derive alternate
versions of each identity. In addition to the formulas displayed below, there is a rich set of other
identities that can be found in the literature.

Law of Cosines for Sides (also simply called Law of Cosines):
cos(a) = cos(b) cos(c) + sin(b) sin(c) cos(A) Eq71
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The right-hand side contains two sides (here, b and ¢) and their included angle (A). The left-hand
side contains the third side (a), which is opposite to the included angle. This is the most used
identity (or law) of spherical trigonometry.

Primary applications: (1) finding the third side of a triangle, given two sides and their included
angle; and (2) finding any angle of a triangle (using cyclic substitution), given three sides.

The right-hand side of Eq 71 is similar to the expression for cos(b + c), except that another
factor, whose absolute value is no greater than unity, is present. It follows that the right-hand
side must have absolute value no greater than unity, regardless of the values of the three
variables.

Law of Cosines for Angles (also called Supplemental Law of Cosines):
cos(A) = — cos(B) cos(C) + sin(B) sin(C) cos(a) Eq 72

The right-hand side contains two angles (here, B and C) and their included side (a). The left-hand
side contains the third angle (A), which is opposite to the included side. The right-hand side must
have absolute value no greater than unity, regardless of the values of the three variables.

Primary applications: (1) finding the third angle of a triangle, given the other two angles and
their included side; and (2) finding any side of a triangle (by cyclic substitution) from all three
angles.

Law of Sines:
sin(a) sin(b)
sin(4) - sin(B)
Primary application: Considering two angles and their opposite sides, and given three of these
parts, find the remaining part. It is possible to select values for three of the parts such that a
solution for the fourth part does not exist.

Eq 73

When a solution does exist, the ambiguity of the arc sine function must be considered. From
Ref. 24, Article 83: “the point may be sometimes settled by observing that the greater angle of a
triangle is opposite to the greater side.” Article 86 addresses this topic further. For angle B
unknown, it states “if a lies between b and & — b, there will be one solution; if a does not lie
between b and  — b, either there are two solutions or there is no solution”. The cases of a = b
and a = m — b are addressed separately.

Analog of Law of Cosines for Sides (also called the Five-Part Rule):
sin(a) cos(B) = cos(b) sin(c) —sin(b) cos(c)cos(A)
sin(a) cos(C) = cos(c) sin(b) —sin(c)cos(b)cos(A)

Eq 74
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These equations can also be written as
sin(opposite side a) cos(adj ang X)
= cos(side x) sin(side y) — sin(side x) cos(side y) cos(included angle A)

For the formulas herein, the right-hand sides of both lines of Eq 74 have the same two sides and
included angle (and almost identical functions) as the right-hand side of the law of cosines for
sides (Eq 71). However, whereas the law of cosines for sides has the opposite side on the left-
hand side, the analogue law has the opposite side and an adjacent angle.

Primary application: This law is not often used; herein, it’s employed in situations where two
sides and the included angle are known, and it is desired to unambiguously find the two adjacent
angles directly from the known quantities — e.g., see Subsection 4.2.2.

Four-Part Cotangent Formula:

cos(a) cos(B) = sin(a) cot(c) — sin(B) cot(C) (cBal)
cos(a) cos(C) = sin(a) cot(b) — sin(C) cot(B) (BaCb)

Eq 75

These equations can also be written as
cos(inner side) cos(inner angle)
= sin(inner side) cot(outer side) — sin(inner angle) cot(outer angle)

The six elements (or parts) of a triangle may be written in cyclic order as (aCbAcB). The four-
part cotangent formula relates two sides and two angles constituting four consecutive elements.
The outer side and angle (i.e., at the ends of such a sequence) each appears once in Eq 75, as the
argument of a cotangent function, whereas the inner parts appear twice.

Primary applications: (1) Given two angles (here, B and C) and their included side (a), find the
adjacent sides (b and c). (2) Given two sides (c and a, or a and b) and their included angle (B or
C), find the adjacent angles (C and B).

For same three known quantities as the two cosine laws (Eq 71 and Eq 72), the four-part
cotangent formula provides solutions for the adjacent quantities that the cosine laws do not.
However, application (2) can also be accomplished by a combination of the law of cosines (Eq
71) and the analogue law (Eq 74).

Napier’s Analogies”:

cos[z(A B)]
cos[l(A + B)] tan[ ]
sm[ (A- B)] tan[ ]
sm[ A+ B)]

tan [%(A + B)] cos[l(a 5 [1 ] tan B(a + b)]

cos|(a—b)|

[5¢ )%

sin sin[z(a — b)| b 1
sm[l(a + b)] [ C]

Eq 76

tan[ (A- B)] tan [%(a — b)]

* In mathematics, the term ‘analogies’ was historically used for proportions.
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For each equation, either: (a) the right-hand side contains two sides and their included angle, and
the left-hand side contains the opposite two angles; or (b) the right-hand side contains two angles
and their included side, and the left-hand side contains the opposite two sides.

Primary applications (1): Given two sides (here, a and b) and their opposite angles (A and B),
find the remaining side (c) and remaining angle (C). (2) By combining two equations: (a) given
two sides and the included angle, find the opposite two angles, or (b) given two angles and the
included side, find the opposite two sides.

Considering the lower left-hand equation, tan[2(4 — B)] and sin[X(a — b)] must have the same
sign. Thus, A > B if and only if a > b. It follows that, if the sides of a spherical triangle are

ordered based on length, their opposite angles must have the same order based on magnitude,
and vice versa. The lower right-hand equation leads to the same result.

The Law of Tangents for spherical triangles is the ratio of the lower to the upper equations on
either side of Eq 76. It is not used herein.

Delambre’s Analogies:

cos[%(A + B)] sin[%C] cos[%(A — B)] sin[%C]

cos[%(a + b)] N cos[%c] sin[%(a + b)] N sin[%c] -
sin[%(A + B)] cos[%C] sin[%(A — B)] cos[%C] |
cos[%(a — b)] - cos[%c] sin[%(a - b)] - sin[%c]

For each equation: the left-hand side contains two angles and their their opposites sides, and the
right-hand side contains the remaining angle and its opposite side. Angles are always in the num-
erator, and sides in the denominator. Napier’s Analogies are ratios of Delambre’s Analogies.

Primary application: Checking a solution for a triangle (as each expression contains all six parts
of a spherical triangle).

Same Affection for Sums/Difference of Opposite Sides/Angles:

The sides and angles of a ‘mathematical’ spherical triangle all lie in (0, ). Thus %2(4 + B) and
¥ (a + b) must as well. Considering the upper left-hand equation in Eq 77, it follows that these
two sums are less-than/equal-to/greater-than ¥2m synchronously (Ref. 24). Also, %2(A — B) and
¥%(a — b) both lie in (-Y2r, Y2r). Considering the lower right-hand equation in Eq 77, it follows
that these differences are less-than/equal-to/greater-than zero simultaneously. Ref. 24 terms this
characteristic as ‘having the same affection’.
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Solving for Angles and Sides:

When solving for angles and sides using the above formulas, one must be aware of the possi-
bility of multiple angle solutions to inverse trigopnometric functions (Subsection 2.1.6). In the
realm of “‘mathematical’ spherical triangles, where angles and sides are in the range (0, «), the arc
sine function (often arising from use of the law of sines) is the primary source of concern, as two
angles in the range (0, m) can have the same sine value. (However, some physical problems have
two possible solutions — i.e., one solution is ambiguous [not extraneous] and additional infor-
mation must be used to select the correct physical solution.) In the following text, an attempt is
made to avoid these situations, or at least to point them out when they do occur.

4.1.7 Taxonomy of Mathematical Spherical Triangle Problems

A spherical triangle is fully defined by its six parts. The case of five known parts is trivial,
requiring only a single application of either cosine law or the sine law. For four known parts,
there is one non-trivial case. For three known parts there are six cases. Each of the seven cases is
illustrated in Figure 14 and enumerated below (Ref. 26), along with a solution approach. For
some cases, others solutions exist.

@?Q

(bcB)

a
aNaN eIt
(aBC) (aAB) (ABC)

Figure 14 Taxonomy of Mathematical Spherical Triangle Problems

Mathematical spherical triangle taxonomy:
(1) Three sides known; SSS (side-side-side) case — Eq 71, three times

(2) Two sides and the included angle known; SAS (side-angle-side) case — Eq 71 for a,
Eq 73 and/or Eq 74 forBand C

(3) Two sides and a non-included angle known; SSA (side-side-angle) case — Eq 73 for
C, then follow case 7

(4) Two angles and the included side known; ASA (angle-side-angle) case — Eq 72 for
A thenEq730orEq75bandc
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(5) Two angles and a non-included side known; AAS (angle-angle-side) case — Eq 73
for b, then follow case 7

(6) Three angles known; AAA (angle-angle-angle) case — Eq 72, three times

(7) Two sides and their opposite angles known; AASS (angle-angle-side-side) case — Eq
76 for A and a.

4.1.8 Taxonomy of Navigation Spherical Surface Problems

The spherical surface formulation introduced in Section 1.2.2 involves seven variables. For a full
solution to a situation, four variables must be known; from these, the remaining three can be
found. Thus, 35 mathematical problems and 105 solution equations can be posed. However, the
spherical surface situation is symmetric in U and S; interchanging U and S only changes the
notation, but does not change the underlying problem. Of the 35 possible problems, three are
self-symmetric and 16 have symmetric versions — see Table 6.

Table 6 Taxonomy of Spherical Surface Navigation Problems

Prob Known Quantities Problem Structure

4 T . 3] .| Comment
Lu | Au |wsu | Ls | As | wus | @ | SP ‘ SS ‘ No A ‘ Case

1 X X X X X 2 Section 4.2
2 X X X X X 3 Section 4.6
3 X X X X X 3 Similar to #2
4 X X X X X 1
5 X X X X X 4 Section 4.5
6 X X X X X 5
7 X X X X X 3
8 X X X X X 5
9 X X X X X 2 Section 4.3
10 X X X X X 3 Section 4.4
11 X X X X X X 7 Over-specified
12 X X X X X X 1, 2, + | Over-specified
13 X X X X X 5 Similar to #8
14 X X X X X 2 Similar to #9
15 X X X X X 3
16 X X X X X X 2, 4, + | Over-specified
17 X X X X X 6
18 X X X X X 5
19 X X X X X 4 Subsection 4.2.3

1 Symmetric Problem exists

2 This problem is Self-Symmetric

8 Insufficient information to determine longitude
4 Spherical Triangle Case (Subsection 4.1.7)
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As noted in Table 6 (column labeled ‘No A1°), 3 of 19 problems summarized (and 5 of the full 35)
do not involve either longitude being known. Thus the solution can only yield a longitude
difference rather than an actual longitude. Table 6 also references the corresponding spherical
triangle case (Subsection 4.1.7) and the cases that are addressed in the remainder of this chapter.
All seven spherical triangle cases presented in Subsection 4.1.7 occur in Table 6

4.2 The Indirect Problem of Geodesy

North

The Indirect problem of geodesy (introduced in Sub- North

section 1.2.2) is illustrated in Figure 15 (also see Figure
13). The known elements (and their values) of triangle
PUS are sides PU (Yo — Ly) and PS (Y2m — Lg) and the
included angle at P (A — Ay). In terms of the taxonomy U (L, Ap)
of spherical triangles of Subsection 4.1.7, this problem
falls under Case (2) — a SAS (side-angle-side) situation. S (Lg, ig)

Figure 15 Indirect Problem

4.2.1 Computing the Geocentric Angle of Geodesy

Finding the geocentric angle between two locations on the

spherical earth is fundamental navigation task. Referring to Figure 13, the angular distance
between U and S is readily derived from the law of cosines for sides (Eq 71), with the length 6
of the great circle are connecting U and S as the unknown quantity

cos(6) = cos(Ly) cos(Lg) cos(Ay — Ag) + sin(Ly) sin(Lg) Eq 78

The right-hand side of Eq 78 evaluates to a value in [-1, 1]; thus 8 can be found uniquely in [0,
nt]. As ‘sanity’ checks, this expression reduces to 6 = |Lg — Ly| when A = Ay, and to 6 =
IAS _Aul When LS = LU = O

Forms of Eq 78 (e.g., involving logarithms) were utilized for centuries using paper-and-pencil

and rudimentary tables. However, great circle routes only

became practical with the introduction of steam power. During 4
this era, since Eq 78 is ill-conditioned for small values of 6,
alternatives were sought. Thus, a modification was formulated
utilizing the versine (Latin: sinus versus, or flipped sine) — see S D
Figure 16 (Ref. 30).
vers(8) = 1 — cos(0) = 2 sin? (%9) Eq 79
. . : . : B
In early terminology, the ordinary sine function was called sinus i i i
. . ) ) Figure 16 Sine, Cosine and
rectus, or vertical sine. Tables for the versine or haversine (half Versine. and the Unit Circle
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of versine) date to the third century BC.

Using the haversine function, the geocentric angle 6 between known locations U and S can be
found from the historically significant ‘haversine formula’ (Ref. 31)

hav(6) = hav(Lg — Ly) + cos(Lg) cos(Ls) hav(As — Ay) Eq 80

Without explicitly utilizing the versine or haversine functions (which are less needed today, due
to the availability of computers), an analytically equivalent version of the haversine formula is

sin GH) = Jsinz (%(LS — LU)> + cos(Lg) cos(Ly) sin? (%(/15 — AU)) Eq 81

The right-hand side of Eq 81 evaluates to a value in [0, 1], so 8 can then be found uniquely in
[0, =]. Latitude and longitude differences only involve the sine function. This expression reduces
to 6 = |Lg — Ly| when A = A, and to sin(%@) = cos(Ly) |sin (%(/15 - AU))| when Lg = L.

A drawback of Eq 81 (although of far less concern than the problem it solves) is that it’s ill-
conditioned for geocentric angles near . One solution is to use the original equation (Eq 78) in
these situations. Another is to use the following:

cos (%0) = \/cosz (%(LS — LU)) — cos(Lg) cos(Ly) sin? (;(AS — AU)) Eq 82

The previous two equations can be combined to create a form that is monotonically increasing
for 0 < 8 < mand thus not ill-conditioned for any value of & when finding an inverse

. (19) _ \/sinz (%(LS - LU)) + cos(Lg) cos(Ly) sin? (%(AS - AU)) cq 83

: \/cosz (%(LS — LU)) — cos(Lg) cos(Ly) sin? (%(AS — AU))

Remarks: (a) All of the equations for 6 in this subsection are unchanged if U and S are inter-
changed. (b) When the three points P, U and S are aligned (so the triangle PUS is degenerate),
the equations remain valid. (c) An expression for tan(8), vice that for tan(%20) in Eq 83, can also
be derived; see the following two subsections and Section 5.2 (Eq 143).

4.2.2 Computing the Azimuth Angles of the Connecting Arc

Having solved for the geocentric angle, the remaining goal of the Indirect problem of geodesy is
finding the azimuth angles at U and S of the great circle arc connecting these two points. This
determination is slightly complicated by the fact that azimuth angles can vary over the range
[-7t, ], so that a two-argument arc tangent function should be used.
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First, the spherical trigonometry law of sines (Eq 73), applied to the angles at P and at U, yields

sin(s,y) = COS(LS);:ES)S — ) Eq 84

Second, the analogue to the law of cosines for sides (Eq 74) yields

sin(Lg) cos(Ly) — cos(Lg) sin(Ly) cos(As — Ay)

cos(z/;s/u) = Sin(0) Eq 85

Combining Eq 84 and Eq 85 yields

cos(Lg) sin(Ag — Ay)

Eq 86
sin(Ls) cos(Ly) — cos(Lg) sin(Ly) cos(As — Ay) f

tan(tps/u) =

While Eq 84 and Eq 85 depend upon the geocentric angle 8 (which is not a ‘given’ for the
Indirect problem), the solution (Eq 86) for ¥, only depends upon the latitudes and longitudes
of the great circle arc end points, which are “givens’. Thus, the solution for 1, does not chain

from the solution for 6.

The spherical trigonometry methodology employed is symmetric with respect to U and S, so

cos(Ly) sin(Ay — Ag)
sin(Ly) cos(Lg) — cos(Ly) sin(Lg) cos(Ay — Ag)

Eq 87

tan(z/)U/S) =

As mentioned previously, in navigation analyses it is useful to employ azimuth angles in the
range [-x, mt], where negative values denote angles west of north. In some texts, the azimuth
angle at S is taken to be the angle the path would take if it were to continue — i.e., implicitly or
explicitly, point U is taken as the origin and S as the destination of a trajectory. However, herein,
the two points are on an equal basis and the azimuth angle at the second point is that for the great
circle path toward the first point. Eq 86 and Eq 87 reflect this point of view.

Remarks:

= When the three points P, U and S are aligned (so the triangle PUS is degenerate), the
equations in this subsection remain valid.

= |f Eq 84 and Eq 85 are squared and added, the result is .

sin(0) = /[cos(Lg) sin(Ag — Ay)]? + [cos(Ly) sin(Ls) — sin(Ly) cos(Ls) cos(As — A,)]? EQ 88

This expression for the geocentric angle does not have the historical significance of Eq 78
or Eq 80 in Subsection 4.2.1, but is now used in software routines, often in conjunction
with Eq 78 to form tan(6). It is derived using vector analysis in Section 5.2 (Eq 142).
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4.2.3 Alternate Solution Using Napier's Analogies

Referring to Figure 13 (with P=C, S=B and U=A), Napier’s Analogies yields
cos[%(LU — LS)]
sin[%(LU + LS)]
sin[%(LU - LS)]
cos[%(LU + LS)]

tan E(l/)g/u — l/JU/g)] = cot [%(/15 - Au)]

Eq 89

tan [%(IPS/U + ¢U/S)] = cot [%(/15 - AU)]

Because the left-hand side of Eq 89 uses half-angle formulas, the sum and difference of 1,5 and
P,y can be found uniquely in the range (—m, ). Since ¥, ,s and ¥, have opposite signs, the
result of the arc tangent function will be correct for the sum but the difference may require
adjustment by 2.

Special cases: When Lg = Ly, the second line of Eq 89 yields ¢,y = —y/s and the first line
yields tan[ys/y| = cot[%(As — Ay)] /sin[Ly]. When Lg = —Ly, the first line of Eq 89 yields
Ys/u — Yy s = m and the second line yields tan[ys,;| = —tan[%(4s — A)]/ sin[Ly].

The remaining two Napier’s Analogies yield the following espressions for the geocentric angle,
which requiring chaining.

1,1 cos[z(¥syu = Yuys)]
1] =
an [2 ] cos[3(¥s/u + Yuys)]
sin[3(vs/u = Yuys)]
sin[3(ws/u + Yuys)]

cot [%(LU + LS)]
Eq 90

tan [%9] = tan E(LU — LS)]

Eq 89 and Eq 90, in reverse order, can also be used to solve what may be termed the complement
of the Indirect problem of geodesy (Table 6, Row 19): Given the geocentric angle 8 between
points U and S and the path azimuth angles 1,5 and ¥, at both points, what are the latitudes
and the longitude differences for the points?

North
4.3 The Direct Problem of Geodesy y North

The Direct problem of geodesy, introduced in Subsection
1.2.2, is illustrated in Figure 17 (also see Figure 13). The
known elements (values) of triangle PUS are side PU (V4r -
Ly) and side US (8), and their included angle at U (ys,y). ULy, 4ip)
In the taxonomy of Subsection 4.1.7, this problem falls
under case (2) — a SAS (side-angle-side) situation.

Y )
W 7|(negative

S (Ls?,4s?)

Figure 17 Direct Problem

The coordinates L; and A, and the azimuth angle vy of Geodesy
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define a great circle. The Direct problem is the determination of the coordinates of S which is a
given distance 8 from U.along that great circle Related problems are addressed in Sections 4.4,
4.5 and 4.6.

4.3.1 Computing the Satellite Latitude

Applying the spherical law of cosines for sides, where the unknown is the side PS, yields

sin(Lg) = sin(Ly) cos(@) + cos(Ly) sin(@) cos(lps/u) Eq 91l

Latitude angles are restricted to the range [-n/2, n/2], so the principal value of the arc sine
function always yields the correct solution to Eq 91. As checks: when ¥g,, = 0, Ls = Ly + 6;

when yg,y; = m, Lg = Ly — 6; and when g ,;, = %m, Ls = arcsin[sin(Ly) cos(8)].
Alternatives to Eq 91 for finding L are presented in Subsections 4.3.2 and 4.3.3.

4.3.2 Computing the Satellite Longitude

Finding the satellite longitude A is more complex, as longitude angles are in the range [-x, «].
First, apply the spherical law of sines to the angels at P and U

sin(lg — Ay) = Sin(lﬁf)/s ‘E)L:;n(e) Eq 92
Then apply the analogue to the law of cosines for sides
c0s(ls — Ay) = cos(Ly) cos(0) — Cs(l)rslgg)) sin(6) cos(Ys,y) Eq 93
Thus the satellite longitude can be found from
tan(4s = Ay) = cos(Ly) cos(;;n—(lggéj)ns(ii)(e) cos(Ps/u) Eq 94

The right-hand side of the above equation only depends upon “given’ quantities for the Direct
problem, and not on the solution for Ls. By employing a two-argument arc tangent function, the
solution will yield a value of A — A in the range [-=, «]. If this is added to a value of A, (also in
the range [-=, nt]), the result will be in the range [-27, 2nt]. Adjustments of 27 must then be made
to obtain a value of Ag in the range (-x, «].

Two checks on Eq 94, assuming that L, = 0 are: (1) if 5,y = 0, then Ag = 4y; (2) if s,y =

Remarks:
= |f Eq 92 and Eq 93 are squared and added, the result is .

4-13



DOT Volpe Center

cos(Lg) = \/[sin(t/;s/u) sin(t9)]2 + [cos(LU) cos(8) — sin(Ly) sin(8) COS(I/)S/U)]Z Eq 95

This expression for the satellite latitude is not well known, but may have a numerical
advantage over Eq 91 when Lg is near a pole.

4.3.3 Computing the Path Azimuth at the Satellite

After Lg and Ag have been found, the Direct problem solution can be completed by finding the
azimuth of the great circle arc at the satellite’s location, ¥ s, using Eq 87. An alternative

approach that does not chain solutions is to first apply the law of sines,

i L
sin(y ) = — LD ) Eq %

A minus sign is present in Eq 96 because, for triangle PUS, the interior angle at S is 2 — ¥ s.
Subsection 4.6.2 elaborates on this topic.

Then apply the analogue to the law of cosines for sides
sin(Ly) sin(@) — cos(Ly) cos(0) cos(z,bs/U)

Cos(wU/S) = cos(Ly) e
Thus
j —cos(Ly) sin(s,y)
tan(l,bu/s) ~ sin(Ly) sin(8) — cos(Ly) cos(6) cos(Ps/v) o
Remarks:

= Once Lg and A have been found, y,,,c may also be computed using Eq 87.

= |f Eq 96 and Eq 97 are squared and added, an alternative expression to Eq 95 results:

cos(Ls) = \/[cos(LU) SiIl(l/)S/U)]z + [sin(LU) sin(8) — cos(Ly) cos(0) COS(I/)S/U)]Z Eq 99

4.3.4 Alternate Solution Using Napier's Analogies

Referring to Figure 13 (with P=B, S=A and U=C), the two expressions on left-hand of Eq 76
(Napier’s Analogies) yield

cos[z(3m — Ly — 6)]
cos[z(3m — Ly + 6)]
sin[;(3r — Ly — 6)]
sin[2(37 — Ly + 0)]

tan [%(AS — Ay — ¢U/s)] = cot [%#’S/U]

Eq 100

tan E(AU — s — sz/S)] = cot [%lpS/U]
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Because both 1,5 and As — 4y lie in (—m, ], both angles can be found uniquely by using other
than the principal value of the arc tangent function. Using these results, either of the two right-
hand expressions in Eq 76 yield the satellite latitude Lg

a3 5)] = Sy en et 0)

an} (- )] = = = o1, - o)

Eq 101

Eq 100 and Eq 101 (in reverse order) can also be used to solve what may be termed the
complement of the Direct problem of geodesy (Table 6, Row 5); also see Section 4.5.

= Given the latitude of point S, the longitude difference A¢ — A between points U and S
the azimuth angle ¥ /s from S to U

= What is the latitude L; of point U, the geocentric angle 8 between U to S and the
azimuth angle v,y from U to S?

4.3.5 Remarks

Two applications of the equations in this section to ‘real world’ problems are

» Finding intermediate points on the trajectory from U to S (using Eq 91 and Eq 94) by
replacing 6 by u6, where 0 < u < 1. A similar functionality that applies to the
vector approach is described in Subsection 5.3.2.

= Determining the latitude and longitude of aircraft S using range/bearing measure-
ments from a VOR/DME ground station U at a known location (Subsection 4.8.6).

For future reference, using Eq 91-Eq 93, Eq 95 and Eq 98, if 8 = Y4m, then

sin(ls) = cos(Ly) cos(bsy)  cos(ls) = [sin?(syu) + sin (L) cos? (o)
sin(Ag — Ay) = % cos(ls — Ay) = — sin(ngsc(c;SS()ll’s/U)
: _sin(¥sy) cos(Ay) — sin(Ly) cos(Psy) sin(dy)
) = Eq 102
\/sinz (¥syy) + sin?(Ly) cos?(Ps/y) q
cos(As) = — sin(s,y) sin(Ay) + sin(Ly) cos(Ps,y) cos(Ay)

52 s0) + sin(Lu) cos? (syo)

tan(l/JU/s) = — cot(Ly) sin(Ps,y)
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4.4 A Modified Direct Problem: Path Azimuth at Satellite Known

In this modification to the Direct problem of geodesy (Section 4.3), the azimuth angle 1, /5 of
the path at the satellite S toward the user U is known, while the azimuth angle v, of the path
at U toward S is unknown (the opposite of the assumptions for these quantities in unmodified
problem). In the taxonomy of spherical triangles in Subsection 4.1.7, this problem falls under

case (3) — a SSA (side-side-angle) situation. In terms of the navigation triangle UPS, the known
elements (values) are sides UP (Y2 — Ly) and US (0) and angle USP (2 — vy s).

4.4.1 Computing the Satellite Longitude

The approach begins by applying the law of sines to triangle UPS

sin(0) sin(Yy/s)

Sin()ls - /‘lu) - - COS(LU)

Eqg 103

A minus sign is present on the right-hand side of Eq 103 because the interior angle of triangle
PUS at S is 2 — 1y s (Figure 13). In computing As from Eq 103, two solutions are possible.
One solution satisfies |1 — Ay| < /2, and the other satisfies 7 /2 < |Ag — Ay| < m. Except
near the poles, the incorrect solution will typically require that the distance between U and S be
much further than the correct solution, and often is not consistent with the sensors’ ranges; thus,
the correct solution can usually be deduced. It may be necessary to adjust Ag to lie in (-, =].

4.4.2 Computing the Satellite Latitude

The satellite latitude Lg is found from Napier’s Analogies (Eq 76), using the solutions for A
obtained from Eq 103

1(n [l(l/) +As— 2 )] 1(n
tan[5 (5~ Ls)| = zzzé(lpzz _ Az n AZ)] tan 5 (5~ Lo +6)]

(5] - Ty o b6 o)

Eq 104

2

The two expressions in Eq 104 are mathematically equivalent, but one may be preferred
numerically in some situations.

4.4.3 Computing the Azimuth of the Connecting Arc at the User

There are multiple ways to find the azimuth angle ;. Napier’s Analogies (Eq 76) is used
because it raises the possibility of using the four-quadrant arc tangent function.
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_ cos[%(@ -2+ Ly)]

tan [%Lbsw] = Cos[%(@ e )] tan [%(AS — Ay + ¢U/S)]

sin[2(6 —Z+ Ly)]
tan [%lpS/U] = Siné(e n % “1))] tan [%(AS — Ay — ¢U/S)]

Eqg 105

4.5 A Modified Direct Problem: Satellite Longitude Known

For this modification to the Direct problem of geodesy (Section 4.3), the longitude of satellite S,
Ag, is known, and the geocentric angle, 6, between the user U and satellite S is unknown. These
are the reverse of the assumptions for these quantities in the Direct problem. In taxonomy of
spherical triangles in Subsection 4.1.7, this problem falls under case (4) — an ASA (angle-side-
angle) situation. The known elements (values) are angles UPS (A5 — 4y) and SUP (¥s,y) and
their included side UP (Y4x - Lyy). Subsection 4.3.4 addesses this problem using Napier’s
Analogies; a different approach is used here.

In the development below, it is assumed that A # A, because when A = A there is either no
solution (5 # 0 and Y,y # ) or an infinite number of solutions. With this assumption, the

problem is well-posed, since every non-meridian great circle crosses every line of longitude
exactly once.

4.5.1 Computing the Satellite Latitude

The latitude Lg is found from the four-part cotangent formula (Eq 75)

sin(Ly) cos(As — Ay) + sin(As — Ay) cot(Psy)
cos(Ly)

tan(Lg) = Eqg 106

When using the arc tangent function, Lg can be unambiguously found in (-r/2, n/2).

4.5.2 Computing the Geocentric Angle

The geocentric angle 6 is found from the four-part cotangent formula (Eq 75)

sin(Ly) cos(l,bs/u) + sin(l,bs/u) cot(Ag — Ay)

Eq 107
cos(Ly)

cot(@) =

When using the arc cotangent function, 8 can be unambiguously found in (0, x).

4 5.3 Computing the Azimuth of the Connecting Arc at the Satellite

The azimuth angle ¥y s is found without chaining from the law of cosines for angles (Eq 72)
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COS(I/)U/S) = sin(z/;s/u) sin(Ag — Ay) sin(Ly) — cos(z/;s/u) cos(Ads — Ay) Eqg 108

Using the arc cosine function, 1,5 can be found uniquely in either [0, x] or [-x, 0], whichever of

the two ranges does not contain i, (see Eq 110 and associated discussion). Using chaining,

Pys can also be found unambiguously from the four-quadrant arc tangent function.
cos(Ly) sin(As — Ay)

sin(6) [sin(ws/u) sin(As — Ay) sin(Ly) — cos(l,bs/u) cos(As — Ay)]

tan(yys) = Eq 109

4.6 The Hybrid Problem of Geodesy

4.6.1 Problem Characterization

For this modification to the Direct problem of geodesy (Section 4.3), the latitude Lg of satellite S
is known, and the geocentric angle 6 between the user U and satellite S is unknown. These are
the reverse of the assumptions for these quantities in the Direct problem. In the taxonomy of
mathematical spherical triangle problems (Subsection 4.1.7), this situation falls under case (3) —
a SSA (side-side-angle) situation. Referring to Figure 13,the known elements (values) are sides
PU (Y2 — Ly) and PS (Y2 — L) and angle PUS (s ,y). The user’s longitude 4, is not used

in solving the mathematical triangle, but is used in situating that triangle on the earth’s surface.

This problem, which has been termed the Hybrid problem of geodesy, may not have a solution.
The reason is that, except a meridian, every great circle has a maximum latitude L,,, and
minimum latitude — L. If the [Liyay| associated with a specified L, and 1,y is less than the

specified |Lg|, then a solution does not exist.

Conversely, if the |Ly.x| associated with a specified L, and s, is larger than the specified |Lg|,

then two solutions exist. Solutions pairs are symmetric in longitude about A4, the longitude
corresponding to L. FOr convenience, assume that L;; > 0:

= When 0 < gy < %n: If Ly < Lg < Ly, there is a solution pair with both satisfying
0 < As — Ay < m; if Ly = Lg, there is one solution satisfying 0 < g — Ay < m (U is the
other “solution’ in the pair); if —L; < Lg < Ly, there is a solution pair with one
satisfying 0 < Ag — Ay < m and one satisfying —m < Ag — Ay < 0; if =Ly < Lg <
—Ly, there is a solution pair with both satisfying —m < As — A1y < 0.

= When %n <WPgsy <m If Ly < Lg < Lyay there is a solution pair with both satisfying
-1 < Ag — Ay < 0;if Ly = Lg, there is one solution satisfying —m < Ag — Ay < 0 (U is
the other “solution’ in the pair); if —L; < Lg < Ly, there is a solution pair with one
satisfying 0 < A — Ay < m and one satisfying —m < Ag — Ay < 0; If —Lya < Lg < =Ly,
there is a solution pair with both satisfying 0 < A¢ — 1y < .
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4.6.2 Computing the Azimuth of the Connecting Arc at the Satellite

The solution approach begins by applying the law of sines to find ¥, /5

cos(Ly) sin(¥s,y)
cos(Lg)

Sin(l,bU/S) = — Eq llO

As in Eq 103, a minus sign is present on the right-hand side of Eq 110. Thus, Eq 110 requires
that if 0 < ¢,y < mthen — < Py,5 < 0, and vice versa.

The absolute value computed for the right-hand side of Eq 110 can be: (a) greater than unity (in
which case there is no solution, as |Lg| > Lpyay); (b) equal to unity (in which case there is one
solution, as |Lg| = Limay); and (c) less than unity (in which case there usually two solutions, as
|Ls| < Limax)- If (c) is true, label the two possible solutions 5, and ¥y s, and proceed. If (b)
is true, proceed assuming ¥y /51 = Pyys,2 (@lso, refer to Section 4.7).

4.6.3 Computing the Satellite Longitude

For the two solutions for i, ; found in Eq 110, the corresponding longitudes 4 ; are found
using Napier’s Analogies (Eq 76) applied to triangle PUS.

1 cos|Z(Ly — Lg) 1
tan [5(/15,1' — Au)] =— [Z(LZ " Lj)]] cot [E(ll)s/u — 1/;U/5'i)]

2
sin %(LU — LS)]
cos[%(LU + Lg)]

Eq 111

tan [%(As,l- — AU)] = cot B(lps/u + I/JU/S,i)]

Because a half-angle formula is used on the left-hand side of Eq 111, given a value for ¢ ;,
each solution for Ag; can be unambiguously found in the range (4y, Ay £ m). Selecting between
the two expressions in Eq 111 can be based on numerical behavior. Limiting cases are:
= North-South Path — For both expressions, the cotangent function fails on a perfect
north-south route (ys,, = 0 or ¥,y = m). By inspection, in this situation As = 4y;
handling it as a special-case is one way to address it.

= ‘East-West’ Path — When Lg = Ly, then ¥, ,s = —5/y and the second expression in
Eqg 111 reduces to the indeterminate form Oxcc. However, the first expression yields the
correction solution: tan[2(As — A;)] = cot[ys,y]/sin[Ly]. (The last expression reduces
to the indeterminate form Oxoo at the equator, as there is not a unique solution then.)

4.6.4 Computing the Geocentric Angle

The geocentric angle 6 is found from “the other half” of Napier’s Analogies (Eq 76), again using
the solutions for g, found using Eq 110.
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o1 cos[x (s —Yussi)]

tan [59‘] ~ cos[2(Wsu + Yuysi)] “ [E(LU ' LS)] Eq 112
1,1 sin[3(syu — Yuysi)] Lo

tan [501-] = Sn[2 (W0 + Yoss0)] tan [E(LU Ls)]

The choice between the two expressions in Eq 112 can be based on the numerical behavior and
avoidance of singularities. Limiting cases are:

North-South Path —If ¥5,, = 0 then ¥, ;s = m, and vice versa. In both cases, the
fraction in the first expression reduces to the indeterminate form 0/0. However, for either
direction of travel, the second expression yields the correction solution, 8 = |L; — Ls|.
‘East-West’ Path — When Lg = Ly, then ¥ ,5 = —5,y and the second expression
reduces to the indeterminate form 0/0. However, the first expression yields the correction
solution (Subsection 4.2.3), tan[26;] = cos[is,y] cot[Ly]. (This expression reduces to
the indeterminate form Oxoo at the equator, because there is not a unique solution in that
situation.)

4.6.5 Remarks

Unlike the solution for the Direct problem of geodesy (Section 4.3), the solution
sequence here involves chaining (which is typical of SSA problems). Thus, 1, must be
found, even if it is not needed.

One way this problem could arise in aviation is using a sextant to measure latitude
(‘shoot’ the North Star) and using a VOR to measure ¢ ;.

While the topic of lines (or surfaces) of position is deferred to Chapter 6, it’s clear that
for this set of known quantities, the geometry favors (approximately) north-south routes.
On (approximately) east-west routes, the latitude and bearing information are close to
being redundant while there is little information about change in east-west location.
With minimal modifications, the analysis of this section applies to the problem where
Yy/s is known, rather than s ,,. The only explicit change in the above equations is that
Eq 110 is modified to place 15/, on the left-hand side.

4.7 Vertices of a Great Circle

4.7.1 Clairaut's Equation

A special case of Clairaut’s equation” applies to great circles (i.e., encircling the earth), and can
be simply derived by applying the law of sines to ‘mathematical’ triangle UPS. The result is:

cos(Ly) sin(z/;s/u) = —cos(Lg) sin(t/)U/S) Eq 113

The minus sign occurs in Eq 114 because the interior angle at S is 2 — ¥y and

* Alexis Claude de Clairaut (or Clairault) (1713 —1765) was a prominent French mathematician, astronomer and
geophysicist.
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sin(2m — Yy ,s) = —sin(yy,s). So at all points on a great circle, when moving in one direction:

cos(L)sin(yp) =C , C aconstant Eq 114

Clearly, |C| < 1; C is positive for eastward routes and negative for westward routes. Satisfying
Eq 114 is a necessary, but not sufficient, condition for the path to be a great circle —e.g., a
counterexample is a constant-latitude route.

4.7.2 Great Circle Vertex Latitude

A common application of Eq 114 is finding the northern-most and southern-most latitudes of a
full great circle — termed “vertices’ in Ref. 1. At a vertex, sin(y)) = %1, so if the latitude Ly
and azimuth 1, of one point on a great circle are known:

cos(Lmax) = cos(Ly) |sin(1/J5/U)| = |C]| Eq 115

The great circle lies in a plane containing the center of the earth O. L, is the angle between the
great circle plane and the equatorial plane (and |C| is the cosine of that angle). The latitude of the
Southern Hemisphere vertex is —Lyax-

If two points U (Ly, Ay) and S (Lg, Ag) on a great circle are known, the Indirect problem of
geodesy can be used to find s,y; then Eq 115 can be used to find Ly,y. An alternative is to use

the Indirect problem to find the geocentric angle 8,5 between U and S; then 5, can be found
in terms of 8, using Eq 84 and the result substituted into Eq 115:

cos(Ly) cos(Lg) sin(Ag — Ay)
sin(fys)

cos(Lmax) = Eq 116

With Ly, the geocentric angle 6, between U and the vertex V can be found from the law of
cosines applied to triangle UPV with a right-angle at V' (where L;; may be positive or negative)
sin(Ly)

— v Eq 117
sin(Lmax)

cos(Oyy) =

4.7.3 Great Circle Azimuth Angles

At the two points displaced in longitude by +n/2 from a vertex, the great circle crosses the
equator. There sin(y)) = C, so Y| = %n + L. FOr an eastward route, v satisfies

1 1 1 1
ST~ Lnax < Y < 5T+ Liax; for a westward route, — o= Lpay < Y < =T+ Linax-

4.7.4 Great Circle Vertex Longitude

The longitude A4 corresponding to Ly, can be found unambiguously using equations from
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Section 4.6. At vertex V, the path azimuth y is £n/2. If V is thought of as S, the sign of what
would be ¥y s is the opposite of the sign of 1,,. Thus from Eq 111:

COS[Z(LU max)]
sm[ (Ly + Lmax)]

sin (LU max)]
cos[l(LU + Lmax)]

tan [%(Amax - AU)] [% (lPS/U + Sgn(lpS/U)%ﬂ)]

Eq 118

tan [ (Amax — AU)] [% (lPS/U - Sgn(lpS/U)%ﬂ)]

The longitude of the Southern Hemisphere vertex is A, £ . An expression for A, that does
not involve chaining from the solution for L,y is derived by vector analysis in Chapter 5 (Eq
156).

Using geocentric angle 8, an alternative but ambiguous expression for A, can found using

the law of sines
sin(6yy)

Sil’l(/lmax - /1U) = m

Eq 119

4.7.5 Conditions for a Path Containing a Vertex

As stated in Section 4.6, not all great circle paths connecting points U and S pass through the
verteX at (Lmax, Amax) OF its Southern Hemisphere counterpart. To pass through a vertex, the route
between U and S must have enough of a change in longitude to bend towards, and away from, a
pole. The path between U and S will pass through (Lay, Amax) if the absolute values of the
azimuth angles at U and S are both less than 90 deg:

1 1
|¢S/U| <,m and |¢’U/s| <gT Eq 120
In this situation, the great circle route connecting U and S will pass closer to the North Pole than
either end point, U or S.

The great circle route connecting U and S will pass closer to the South Pole than either U or S if
the absolute values of both azimuth angles are obtuse

|l/)S/U| > %” and |l/)U/s| > %ﬂ Eq 121

4.8 Example Applications

The example applications presented at the end of Chapter 3 are extended in the first three (of the
seven) subsections below. These demonstrate the capabilities of spherical trigonometry to pro-
vide more complete solutions to problems. Then, four examples are added — flight route
planning, display of radar measurements, determining an aircraft’s coordinates from a single
VVOR/DME station and the error in modeling the ellipsoidal earth as a sphere.
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4.8.1 Example 1, Continued: En Route Radar Coverage

Predictions of radar visibility of aircraft as a function of the aircraft’s range and altitude, intro-
duced in Subsection 3.7.1, are useful. However, for a specific radar installation, a more valuable
analysis product is a depiction of the radar’s altitude coverage overlaid on a map. As an example,
the ARSR-4/ATCBI-6 installation at North Truro, MA (FAA symbol: QEA) is selected. Assoc-
iating U with the radar location, its coordinates are L;; = 42.034531 deg and A, = -70.054272
deg, and its antenna elevation is hy = 224 ft MSL. Assumming that the terrain elevation in the
coverage area is 0 ft MSL, which is correct for the nearby ocean and optimistic (i.e., terrain
blocking is not considered) for the nearby land.

Associating S with the aircraft location,the sequence of calculations is:
= Using Eq 68 (third line), the radar’s minimum usable elevation angle is found to be
Amin = —0.230 deg
= Aircraft altitudes hg of 3,000 ft, 10,000 ft and 25,000 ft MSL are selected for the
contours to be depicted.

= Using Eq 68 (second line), the geocentric angles 6 corresponding to the selected
altitudes are found. The associated ground ranges R, 8 are 85.7 NM, 141.2 NM and
212.6 NM, respectively.

= Using Eq 68 (first line), the minimum visible aircraft altitude at the radar’s maximum
ground range of 250 NM is found to be hg = 35,590 ft.

= Aset of equally spaced azimuth angles ¥, are selected for the radials from the
radar U to each point S on a coverage contour

= For the geocentric angle 8 corresponding to each contour, and for each azimuth angle
Ps,u, the latitude/longitude (Lg, As) of the corresponding point S on the contour are
found from Eq 91 and Eq 94.

The result of performing the above steps for the North Truro radar system is shown in Figure 18.
(An alternative method for finding coverage contours is described in Subsection 4.8.3. The
method described immediately above can be adapted to situations where terrain blocking must be
considered, while the method of Subsection 4.8.3 cannot, but is more efficient.)

Significance of contours: (a) Inside a contour, aircraft having altitudes equal to or greater than
the contour value are visible to the radar; and (b) Outside the contour, aircraft having altitudes
less than the contour value are not visible to the radar. The contours in Figure 18 appear as
circles, but that is not true in every case. When terrain is not accounted for, the contours appear
smooth, but their shape depends upon the map projection employed. When a terrain blocking is
accounted for, the contours are irregular/jagged.
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Figure 18 Aircraft Altitude Visibility Contours for the North Truro, MA, Radar System

Consistency Check — The primary purposes of QEA are (1) surveillance of higher altitude
airspace, for use by ARTCC controllers; and (2) surveillance of much of the New England off
shore airspace, for use by the Department of Defense (DoD). A third purpose is backup
surveillance of the Boston TRACON airspace; horizontally, this airspace is a circle centered on
Logan Airport with a radius of 60 NM. Boston TRACON controllers have stated that they
consider QEA coverage to extend upward from an altitude of 3,000 ft MSL. Figure 18 is
consistent with that statement.

Cone of Silence — As discussed in Subsection 3.7.1, ATC radars usually have a cone of silence
directly above the antenna; aircraft within this (relatively small) cone may not be detectable.
Following the usual practice, contours for QEA’s cone of silence are not shown in Figure 18.

The U.S. has an extensive ATC radar infrastructure. Generally, one radar station’s cone of
silence will be within the coverage area of one or more other radars. In the case of QEA, the
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Boston ARTCC also receives feeds from: the Nantucket, MA, terminal radar (46.5 NM from
QEA, at essentially sea level), which covers QEA’s cone of silence down to approximately

500 ft MSL,; and the Cummington, MA, en route radar (132.1 NM from QEA, at an elevation of
2,000 ft MSL) which covers QEA’s cone of silence down to approximately 5,000 ft MSL.

4.8.2 Example 2, Continued: Aircraft Precision Approach Procedure

Subsection 3.7.2 illustrates computation of the flight profile (altitude vs. distance from threshold)
for an aircraft precision approach procedure. However, for the procedure to be used
operationally, the coordinates of the fixes are needed by ATC personnel. Computing them is a
straightforward application of spherical geometry.

The sequence of calculations is as follows:

= Using the FAA’s National Flight Data Center (NFDC, Ref. 32) or the AirNav
(Ref. 33) websites, the latitudes and longitudes of the ends of KMCI runway 19L / 1R
are obtained.

= Associating U with the 1R end and S with the 19L end of the runway, the azimuth of
the approach course in the direction away the 19R end is computed, using Eq 86, to
be ys,y; = 12.89 deg

= Associating U with the 19R end of the runway and S with the fix locations, the
coordinates of the fixes are found using Eq 91 and Eq 94.

The results of carrying out steps 1-3 are shown in Table 7.

Table 7 Computed Fix Coordinates for MCI Runway 19L LPV Approach

Fix Name UMREW | FELUR REMNS ZASBO YOVNU GAYLY
Range from Threshold, NM 1.9 4.9 6.2 9.3 12.4 155
Latitude, deg 39.337737| 39.386470| 39.407586| 39.457940| 39.508292| 39.558642
Longitude, deg -94.692345|-94.677907(-94.671645|-94.656696|-94.641725| -94.626732

4.8.3 Example 3, Continued: Satellite Visibility of/from Earth

Extending the analysis in Subsection 3.7.3 to calculating the latitude/longitude coordinates of the
perimeter of the footprint of a geostationary satellite is an example of the application of the
topics in this chapter. Geostationary satellites are approximated as having circular orbits and
being positioned above the earth’s equator. Their altitudes are selected so that their orbital speed
matches the earth’s rotation rate. Thus, from the earth, they appear to be stationary.

The Wide Area Augmentation System (WAAS) satellites (which augment the Global Positioning
System (GPS)) are chosen for this example. The FAA currently operates three geostationary
WAAS satellites (Ref. 34) in order to satisfy the requirements of demanding civil aviation
operations — e.g., precision approaches similar to ILS Category I.
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This analysis is done in two distinct steps. The first step (discussed in Subsection 3.7.3) is to find
the geocentric angle 8 from the nadir N (of satellite S) to user U on the perimeter of the foot-
print. The parameters used in this calculation are:

= Satellite altitude hg = 35,786,000 m = 19,323 NM

* Maskanglea = 5deg

= Radius of the earth R, = 6,378,137 m = 3,444 NM (Eq 23)

Substituting these values into Eq 40 yields 6 = 76.3 deg. Thus the a user U on the earth’s surface
can be up to 76.3 deg (in terms of the geocentric angle) away from the satellite nadir N and
WAAS satellite will be visible. Since geostationary satellites are directly above the equator, the
maximum user latitudes with visibility are £76.3 deg if the user is at the same longitude as the
satellite. Similarly, if the user is on the equator, the longitude extremes at which the satellite is
visible are £76.3 deg from the satellite longitude.

The second step of the analysis is obtaining the latitude/longitude coordinates (L, Ay) of an
arbitrary point U on the perimeter of the visible region. This step can be done in at least two
ways. One way, described in Subsection 4.8.1, utilizes Eq 91 and Eq 94 (with subscript U
replaced by N, and subscript S replaced by U).

An alternative method for finding the coordinates of coverage perimeter locations employs a
modified version of Eq 81. Taking the coordinates of the satellite nadir to be (Ly, Ay), Where
Ly = 0, for a given (or assumed) user latitude L, the corresponding user longitude A, given by

sin?(36) — sin? (%(LU))
cos(Ly)

Ay = Ay £ 2 arcsin \] Eq 122

Using Eq 122 and a set values is assumed for L;; in the interval [-8, 8], the corresponding two
sets of values for A, are computed (which are symmetrically located about Ay).

The WAAS satellite labels and longitudes are: AMR, -98 deg; CRE, -107.3 deg; and

CRW, -133 deg. After the calculations of Eq 122 are carried out, the results are depicted in
Figure 19. For context, the locations of a few airports are also shown in Figure 19. Ref. 34 has a
page, “WAAS GEO Footprint”, which contains a figure that is similar to Figure 19.
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Figure 19 WAAS Satellite Visibility Contours for 5 deg Mask Angle

4.8.4 Example 4: Great Circle Flight Route

For many reasons — e.g., siting of ground-based communications, navigation and surveillance
equipment; estimation of fuel consumption; positioning of search and rescue assets; and analysis
of flight routes — there is a need to calculate path distances between any two locations on the
earth. Such calculations are a straightforward application of the equations presented earlier in
this chapter. The basic approach is: (a) solve the Indirect problem of geodesy (Section 4.2), so
that geocentric angle (i.e., path length) and the azimuth angles of the path end points are known;
then (b) divide the path into equal-length segments and solve the Direct problem of geodesy
(Section 4.3) for each segment, starting at one end of the path and progressing to the other.

The result of carrying out these steps for the route between the Boston Logan (BOS) and Tokyo
Narita (NRT) airports is shown in Figure 20. This figure employs Cartesian coordinates to
display longitude on the abscissa (which is effectively a Mercator scaling) versus latitude on the
ordinate utilizing equal map distances for equal angles (which is not Mercator scaling). In
addition to showing the great circle flight path for a spherical earth model (green curve), Figure
20 also shows the shortest path for an ellipsoidal earth model using Vincenty’s algorithm
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(Subsection 2.2.3). On this graphic, the separation between the curves is not perceptible. The
largest separation occurs at the highest latitude, where the ellipsoidal-earth path latitude is
0.06 deg greater than the great circle/spherical earth path.
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Figure 20 Mercator-Like View of BOS-NRT Great Circle and Rhumb Line Routes

For the great circle/spherical earth route; the azimuth angle at BOS is 334.8 (-25.2) deg, the
azimuth angle at NRT is 22.8 deg, and the geocentric angle is 8 = 1.689 rad, or 53.8% of = rad
(= rad being the longest possible great circle route). The computed distance (using the earth
radius defined in Eq 31) is 5,810.4 NM, while the distance computed using Vincenty’s algorithm
is 5,823.5 NM. The ellipticity error for the spherical-earth path length is 0.2%.

The trajectory’s northern-most latitude is N71.7 deg (Eq 116), which occurs at a longitude of
W143.42 deg. Equations from Section 4.6 predict that the trajectory crosses the Arctic Circle
(N67 deg latitude) at longitudes of W104.7 deg and E177.9 deg. The trajectory is within the
Arctic Circle for 29.2% of its length, although in Figure 20 it appears to be a larger fraction
because the convergence of longitude lines at the Pole is not depicted.

Figure 20 also shows the course from BOS to NRT for the rhumb line (constant azimuth angle)
method historically used for marine navigation (Section 9.3). The azimuth angle for a rhumb line
from BOS to NRT is 266.7 (-93.3) deg. The rhumb line path is 19% or 1,106.7 NM longer than
the great circle route calculated using Vincenty’s algorithm.

Figure 21 depicts a polar view of the great circle and rhumb line routes. For this perspective,
(@) the great circle route is almost a straight line while the rhumb line route is circular, and
(b) the difference in the lengths of the paths is obvious.
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Figure 21 Polar View of BOS-NRT Great Circle and Rhumb Line Routes

Contrasting Figure 20 and Figure 21 illustrates value of matching the charting technique to the
method for defining a route. Figure 20 is similar to a Mercator projection”, with both having the
property that rhumb lines are straight; and Figure 21 similar to a gnomonic projection, which
has the property that great circles are depicted as straight lines. Mercator projections were
preferred for maritime navigation before the equivalent of autopilots were available, while
gnomonic projections are preferred for aircraft navigation.

The BOS-NRT city pair has all three factors that favor great circle navigation over rhumb line
navigation: widely separated origin and destination, approximately co-latitude origin and
destination, and the end points are at mid-latitudes. A contrasting route is Boston (BOS) -
Buenos Aires (EZE). It has a roughly similar length, but is oriented north-south. For BOS-EZE
the rhumb line path is 0.007% (0.3 NM) longer than the great circle path.

4.8.5 Example 5: Radar Display Coordinate Transformations

In this subsection, an ATC radar is associated with the user U and an aircraft under surveillance
with the satellite S. The radar’s installation information will include:

* For a true Mercator projection, the displayed linear distance between equal latitude angular increments as well as
between equal longitude angular increments increases towards the poles.

' For a true gnomonic projection, the displayed linear distance between equal latitude increments increases toward
the equator.
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Ly — Radar latitude
Ay — Radar longitude
hy, — Radar antenna elevation above sea level

For each scan (antenna revolution), a secondary surveillance radar provides three quantities
concerning an aircraft:
Ys,y — Alrcraft azimuth relative to North (determined from the antenna direction)
d — Slant-range between the aircraft and the radar (determined from interrogation-reply time)
hg — Aircraft barometric elevation above sea level (reported by the aircraft transponder).

Some long-range radars may correct for propagation phenomena (e.g., refraction), but those
capabilities are not addressed here.

The first goal in ATC radar display is to accurately
depict the horizontal separation between aircraft pairs.
When two aircraft are only separated vertically (i.e., are
at the same latitude and longitude) then their screen
icons should overlay each other — or at least be close in
comparison to the minimum allowable separation. Figure
22 illustrates the effect of directly displaying the slant-
range of two aircraft that are only separated vertically
(although it exaggerates the effect). Without altitude or
elevation angle information, this may be the best that can
be done. Partly for this reason, aircraft operating in busy Figure 22 Effect of Displaying a

airspace are required to have a Mode C capable Target’s Slant-Range
transponder.

Generally, the display processing methodology depends upon the radar’s maximum range. Two
situations are addressed.

Tangent Plane Display — This method displays targets on a plane that is tangent to the earth at
the radar’s latitude/longitude and sea level. Locations on the plane can be computed in Cartesian
(east/north) or polar (range/azimuth) coordinates. The steps in the calculation are:

= The aircraft elevation angle, «, is found using Eq 50, repeated here:
(hs — hy)? + 2(R, + hy) (hs — hy) — d? Eq 123
2(R, + hy)d

= The aircraft range along the tangent plane, Rngrp , is found (sometimes called the
slant-range correction)

sin(a) =

Rngrp = dcos(a) Eq 124
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= |f needed, TPRng can be resolved into east and north components
Eastrp = Rngrp sin(¥s,y)

Eq 125
Northrp = Rngrp cos(¥s/y)

This method accounts for the difference between slant-range and ground range, but does not
account for the curvature of the earth. Figure 23 shows the slant-range correction error (differ-
ence in computed Rngrp values for two aircraft at the same latitude/longitude but different
altitudes) for ranges/altitudes characteristic of a terminal area radar.
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Figure 23 Slant-Range Correction Error for Tangent Plane Terminal Radar Display

The maximum slant-range correction error is approximately 260 ft. This may be contrasted with
the difference in the slant-ranges, 644 ft, and the nominal terminal area separation standard of 3
NM. Thus the display processing removes more than half of the error that would occur with
display of measured ranges, but there remains a residual error of 1.5% of the separation standard.

Latitude/Longitude Display — Because errors for a tangent plane display increase with the
ranges and altitude differences of aircraft targets, en route radars use a more accurate method that
fully accounts for the earth’s curvature.

= The aircraft’s geocentric angle relative to the radar is found using Eq 44
= The aircraft’s latitude/longitude are found from Eq 91 and Eq 94

= The aircraft’s latitude and longitude are converted to the coordinates of a map
projection (e.g., Lambert conformal conic) for display to a controller.
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En route radar coverage area will include multiple airports, including possibly several major
ones. It’s advantageous to display targets relative to the airport locations.

4.8.6 Example 6: Single-Station VOR / DME RNAV Fix

A single VOR/DME station S provides an aircraft A with its azimuth angle 14,5 (VOR function)
and slant-range distance dg, (DME function) relative to the station. For area navigation
(RNAYV), it may be necessary to use those measurements to determine the aircraft’s latitude and
longitude A (L4, A4). The aircraft’s altitude h, is assumed known, as are the station coordinates
(Lg, As) and DME antenna altitude h.

The first step is to convert the measured slant-range dg, to the geocentric angle 65, (sometimes
called the slant-range correction). This is accomplished by utilizing Eq 44, except that subscript
U is replaced by S, and subscript S is replaced by A. The Direct problem of geodesy is then
applicable (Section 4.3). The aircraft’s latitude and longitude are found from Eq 91 and Eq 94,
with the same subscript substitutions applied. Finally, if desired, the azimuth angle of the station
relative to the aircraft may found from Eq 98 (again, with the same subscript substitutions).

Remarks:

= While the terminology and notation are different, the processing steps in this
subsection are identical to those used for an en route radar latitude/longitude display
in Subsection 4.8.5.

= While the slant-range correction of is usually considered a necessary step in en route
radar processing, it is often not performed in navigation applications. The distances
involved are generally shorter, and the measurements are generally less accurate
(particularly the VOR measurement of 1, 5). Thus, for RNAV, the approximation
Os4 = dsa /R, (in lieu of Eq 44) may be sufficient.

= |f the station only provides a range (DME) measurement, but the azimuth angle from
the aircraft to the station, 1,4, can be measured, then the expressions in Section 4.4

can be used to find the aircraft latitude/longitude and the aircraft azimuth from the
station.

4.8.7 Example 7: Path-Length Ellipticity Error for Selected Airport Pairs

To provide an indication of the accuracy of the spherical earth approximation, a set of fourteen
airports were selected. These airports are intended to be representative of current aviation
activity. However, in terms of frequency of operations, they over-emphasize longer routes (and
some are too long for commercial transport aircraft at this time). The result is a total of 91
possible paths between airport pairs. For each pair, estimates of the length of the paths are
computed for:
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a) WGS-84 ellipsoidal earth model utilizing Vincenty’s algorithm cited in Subsection 2.2.3
(which is treated as a ‘black box’), and

b) Spherical approximation of the earth utilizing the radius in Eq 31 and the expressions in
Eq 143, Eq 144 and Eq 145.

The fourteen airports are partitioned into two groups of seven each — CONUS (Table 8) and
International (Table 9). The CONUS group spans the CONUS land area and includes paths of
various lengths and orientations. The International group, which includes airports in Alaska and
Hawaii, has airport pairs with greater separation and paths that cross the equator. The longest
path is HNL-JNB (10,365 NM), which is not feasible with current commercial aircraft. As a
point of interest, the longest scheduled commercial flight route was 8,285 NM, between Newark
and Singapore; it is no longer in operation, reportedly for business reasons.

Table 8 CONUS Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Gen. Edward L. Logan International (BOS) 42.3629722 -71.0064167 | Boston, MA
Ronald Reagan Washington National (DCA) 38.8522 -77.0378 Washington, DC
O'Hare International (ORD) 41.9786 -87.9047 Chicago, IL
Miami International (MIA) 25.7933 -80.2906 Miami, FL
San Diego International (SAN) 32.7336 -117.1897 San Diego, CA
Dallas/Fort Worth International (DFW) 32.8969 -97.0381 Dallas/Fort Worth, TX
Seattle-Tacoma International (SEA) 47.4489 -122.3094 Seattle, WA

Table 9 International Airports Used in Ellipticity Error Analysis

Airport Name (IATA Code) Lat. (deg) Lon. (deg) Major City Served
Wiley Post—Will Rogers Memorial (BRW) 71.2848889 | -156.7685833 | Barrow, Alaska
Honolulu International (HNL) 21.318681 -157.9224287 | Honolulu, Hawaii
London Heathrow (LHR) 51.4775 -0.4614 London, England
Narita International (NRT) 35.7647 140.3864 Tokyo, Japan
Ministro Pistarini International (EZE) -34.8222 -58.5358 Buenos Aires, Argentina
Oliver Reginald Tambo International (JNB) -26.1392 28.246 Johannesburg, South Africa
Sydney (SYD) -33.946111 151.177222 Sydney, Australia

Figure 24 is a histogram of the path length differences for the 91 paths analyzed using the
methods labeled a) and b) above (a positive error corresponds to the spherical earth path being
longer than the ellipsoidal earth path).
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Figure 24 Histogram of Path Length Ellipticity Errors for 91 Airport Pairs

For all 91 paths: the average of the absolute value of the relative path length ellipticity
errors is 0.17%; the maximum is 0.43% (NRT-SYD); the minimum is 0.005% (DCA-
SYD). Over 90% (83 of 91) of the paths have path length ellipticity errors whose absolute
values less than the ‘rule of thumb’ of 0.3%. At the path end points, the average absolute
azimuth error is 0.10 deg, and the maximum is 1.87 deg (HNL-JNB).

For the 21 paths within CONUS: the average of the absolute value of the relative path
length ellipticity errors is 0.18%; the maximum is 0.27% (BOS-SEA); the minimum is
0.02% (ORD-DFW). At the path end points, the average absolute azimuth error is
0.07 deg, and the maximum is 0.12 deg (ORD-DFW).
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5. TWO-POINT / 3D-VECTOR FORMULATION

Many of the expressions derived in Chapter 4 using spherical trigonometry can also be
developed using vectors and matrices. In utilizing this approach, one: (a) forms the relevant
vectors/matrices, generally by assigning values to individual elements (which often involves
computing trigonometric functions); (b) manipulates the vectors/matrices as entities, typically
utilizing vector/matrix addition and multiplication, vector dot and cross products, etc., but not
involving calculation of trigonometric functions; and (c) computes the desired scalar quantites,
often utilizing inverse trigonometric functions. The purposes of this chapter are to demonstrate
this approach in detail and to show that the results are identical to those found using spherical
trigonometry.

Section 5.1 provides definitions of the vectors and coordinate frames needed to analyze the
geometry of two points (user U and satellite S) relative to a spherical earth. Section 5.2 addresses
the Indirect problem of geodesy, and provides vector versions of the key equations derived in
Section 4.2 using spherical trigonometry. Section 5.3 returns to the Indirect problem, and
demonstrates that for some combinations of known and unknown variables, vector analysis
provides an alternative method of deriving other solutions found in Chapter 4. Section 5.4
addresses the Direct problem of geodesy, and shows that the equations in Section 4.3 can be
found by vector/matrix analysis as well. Section addresses the intersection of two small circles
on the earth’s surface, a classic celestial navigation problem and an application of the Indirect
and Direct problems of geodesy. Lastly, Section 5.5 demonstrates that vector analysis provides
an alternative method of deriving certain expressions found in Chapter 3.

An advantage of the vector/matrix technique is ease of coding. Once the vector/matrix elements
have been assigned, the calculations can largely utilize general- and special-purpose software

packages. Matlab’s Mapping Toolbox is an example; Ref. 35 has another. A disadvantage of the
vector/matrix technique is that it can obscure geometric aspects of the problem being addressed.

5.1 Vector and Coordinate Frame Definitions

5.1.1 Earth-Centered Earth-Fixed (ECEF) Coordinate Frame

The coordinates of two locations of interest on the earth’s surface are:
= User position: latitude L, longitude A, and altitude h
= Satellite position: latitude Lg, longitude A¢ and altitude hg

Define the earth-centered earth-fixed (ECEF) coordinate frame e by (see Figure 25, where the
figure’s ¢ denotes latitude):
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= x-axis: lies in the plane of the equator and points toward Greenwich meridian
= y-axis: completes the right-hand orthogonal system
= z-axis: lies along the earth's spin axis.

The location of the user and satellite in the e-frame are, respectively

Toux 10ux] cos(Ly) cos(Ay)
r5y = [Louy | = 16y (Re + hy) = [10uy | (Re + hy) = | cos(Ly) sin(Ay) | (R, + hy)
ESU,Z _(e)U,Z_ Sin(LU)
0s,x 10sx] cos(Lg) cos(As)

[Ss = Egs,y = 185 (Re + hs) = _(e)s,y (Re + hs) = COS(LS) Sin(ls) (Re + hs)

0sz 1%s.z] sin(Ly)

Eqg 126

Here 1§, and 1§ are unit vectors associated with rgy and rgg, respectively. Note that the e-

frame, as are all frames used herein, is right-handed — e.g., 15y, * 15y, = lou .-

Figure 25 Vector Technique Coordinate Frames of Interest (¢ = Latitude)

Given rgy, the user’s latitude, longitude and altitude can be found (respectively) from

ry g
20U,z . 20U,z
L, = arctan = arcsin | ————

2 2 R,+h
(ESU,x) + (E(e)U,y) ) Y

Ay = arctan({ou,y ) EoU,x)

= J(c80)” + ()" + (th0,)° ~ Re

Similarly, given rgs, the satellite’s latitude, longitude and altitude can be found from

5-2

Eq 127
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g g
~0S,z . ~0S,z
Lg = arctan = arcsin

R, +h
\/(Egs,x)z + (E(e)S,y)Z/ ) ’

As = arctan(gos,y ,£os,x)

2 2 2
s = J(tBs)” + (tBsy)” + (£55.)" ~ Re

Eq 128

5.1.2 Local-Level Coordinate Frame at User’'s Position

Define a local-level coordinate frame u that is parallel to a plane tangent to the earth at the user's
position having coordinate axes:

= e-axis point east

= n-axis points north

= y-axis points up (away from earth's center).

The direction cosine matrix (DCM) which rotates the e-frame into the u-frame (e.g., Eq 134) is

Ce =T To(—Ly) Ts(Ay) Eq 129
Here Ti(¢) denotes the rotation matrix about axis i by angle £ and and T denotes an axis-
permutation matrix

1 0 0
T, = [0 cos(&) sin(é)]

cos(¥) 0 —sin(é)]
0 —sin(¢) cos(d)

Tz(é)z[ o 1 0
sin(¢) 0 cos(d)

Eq 130
cos($) sin(é) 0 0 1 0
T30 = [—sin(f) cos(&) O] T=10 0 1]
0 0 1 1 0 0
Thus C}' is given by
—sin(4y) cos(Ay) 0
Cy = |—sin(Ly) cos(1y) —sin(Ly)sin(Ay) cos(Ly) Eq 131
cos(Ly) cos(Ay)  cos(Ly)sin(Ay)  sin(Ly)
Clearly, Ly and 4, can be found from C¢ as well as from r§y, — e.g., by
L aretan [C233) et (~CELD)
y = arctan Ci(2.3) y = arctan ci(1.2) Eq 132
As is the case for any DCM, Cq is orthonormal; thus
Ci=(CHt=(C)" Eq 133
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5.1.3 User and Satellite Positions in User’s Local-Level Frame

Using the DCM C¢, the positions of the user and satellite in the u-frame are, respectively

E(%U,e ESU,x 0
oy = |Toun | = CE x5y = C& [Louy | = [0] (Re + hy) Eq 134
1

u e
Touu Tou,z

and

u e
EOS,e EOS,x

u — (UL _ cul€
Tosn —Ce I'os = Ce |Losy

Ios
Egs,u ESS,Z
cos(Lg) sin(Ag — Ay)
= | —cos(Lg) sin(Ly) cos(Ag — Ay) + sin(Lg) cos(Ly) | (R, + hsg)
cos(Lg) cos(Ly) cos(Ag — Ay) + sin(Lg) sin(Ly)

Eq 135

Thus, using Eq 134 and Eq 135, the vector from U to S is 1jjg = rjs — Iy, IS

Ijs = I
(Re + hg) cos(Lg) sin(As — Ay) Eq 136
(R, + hg)[—cos(Lg) sin(Ly) cos(Ag — Ay) + sin(Lg) cos(Ly)]
(R, + hg)[cos(Lg) cos(Ly) cos(Ag — Ay) + sin(Lg) sin(